
TM

Excel Programming
Your visual blueprint for

creating interactive spreadsheets

by Jinjer Simon

®

From

Best-Selling Books • Digital Downloads • e-Books • Answer Networks • e-Newsletters • Branded Web Sites • e-Learning

New York, NY • Cleveland, OH • Indianapolis, IN

&

013646-X FM.F 10/16/01 2:35 PM Page i

Published by
Hungry Minds, Inc.
909 Third Avenue
New York, NY 10022
www.hungryminds.com

Copyright © 2002 Hungry Minds, Inc.

Certain design and illustrations are copyright © 1992-2002 maranGraphics, Inc.,
used with maranGraphics’ permission. All rights reserved. No part of this book,
including interior design, cover design, and icons, may be reproduced or
transmitted in any form, by any means (electronic, photocopying, recording, or
otherwise) without the prior written permission of the publisher.

maranGraphics, Inc.
5755 Coopers Avenue
Mississauga, Ontario, Canada
L4Z 1R9

Library of Congress Control Number: 2001092900
ISBN: 0-7645-3646-X
Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

1V/QX/RR/QR/IN

Distributed in the United States by Hungry Minds, Inc.

Distributed by CDG Books Canada Inc. for Canada; by Transworld Publishers
Limited in the United Kingdom; by IDG Norge Books for Norway; by IDG Sweden
Books for Sweden; by IDG Books Australia Publishing Corporation Pty. Ltd. for
Australia and New Zealand; by TransQuest Publishers Pte Ltd. for Singapore,
Malaysia, Thailand, Indonesia, and Hong Kong; by Gotop Information Inc. for
Taiwan; by ICG Muse, Inc. for Japan; by Intersoft for South Africa; by Eyrolles for
France; by International Thomson Publishing for Germany, Austria and
Switzerland; by Distribuidora Cuspide for Argentina; by LR International for Brazil;
by Galileo Libros for Chile; by Ediciones ZETA S.C.R. Ltda. for Peru; by WS
Computer Publishing Corporation, Inc., for the Philippines; by Contemporanea de
Ediciones for Venezuela; by Express Computer Distributors for the Caribbean and
West Indies; by Micronesia Media Distributor, Inc. for Micronesia; by Chips
Computadoras S.A. de C.V. for Mexico; by Editorial Norma de Panama S.A. for
Panama; by American Bookshops for Finland.

For U.S. corporate orders, please call maranGraphics at 800-469-6616 or fax
905-890-9434.

For general information on Hungry Minds’ products and services please contact our
Customer Care Department within the U.S. at 800-762-2974, outside the U.S. at
317-572-3993 or fax 317-572-4002.

For sales inquiries and reseller information, including discounts, premium and bulk
quantity sales, and foreign-language translations, please contact our Customer Care
Department at 800-434-3422, fax 317-572-4002, or write to Hungry Minds, Inc.,
Attn: Customer Care Department, 10475 Crosspoint Boulevard, Indianapolis, IN
46256.

For information on licensing foreign or domestic rights, please contact our Sub-
Rights Customer Care Department at 212-884-5000.

For information on using Hungry Minds’ products and services in the classroom or
for ordering examination copies, please contact our Educational Sales Department
at 800-434-2086 or fax 317-572-4005.

For press review copies, author interviews, or other publicity information, please
contact our Public Relations department at 317-572-3168 or fax 317-572-4168.

For authorization to photocopy items for corporate, personal, or educational use,
please contact Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, or fax 978-750-4470.

Screen shots displayed in this book are based on pre-released software and are
subject to change.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED
THEIR BEST EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS
OF THE CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THERE ARE NO
WARRANTIES WHICH EXTEND BEYOND THE DESCRIPTIONS CONTAINED IN THIS
PARAGRAPH. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES REPRESENTATIVES
OR WRITTEN SALES MATERIALS. THE ACCURACY AND COMPLETENESS OF THE
INFORMATION PROVIDED HEREIN AND THE OPINIONS STATED HEREIN ARE NOT
GUARANTEED OR WARRANTED TO PRODUCE ANY PARTICULAR RESULTS, AND THE ADVICE
AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY INDIVIDUAL.
NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY
OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES.

Trademark Acknowledgments

Permissions

Hungry Minds, the Hungry Minds logo, Visual, the Visual
logo, Read Less - Learn More and related trade dress are
registered trademarks or trademarks of Hungry Minds, Inc.,
in the United States and/or other countries and may not be
used without written permission. The maranGraphics logo
is a registered trademark or trademark of maranGraphics,
Inc. All other trademarks are the property of their
respective owners. Hungry Minds, Inc. and maranGraphics,
Inc. are not associated with any product or vendor
mentioned in this book.

FOR PURPOSES OF ILLUSTRATING THE CONCEPTS
AND TECHNIQUES DESCRIBED IN THIS BOOK, THE
AUTHOR HAS CREATED VARIOUS NAMES, COMPANY
NAMES, MAILING, E-MAIL AND INTERNET
ADDRESSES, PHONE AND FAX NUMBERS AND SIMILAR
INFORMATION, ALL OF WHICH ARE FICTITIOUS. ANY
RESEMBLANCE OF THESE FICTITIOUS NAMES,
ADDRESSES, PHONE AND FAX NUMBERS AND SIMILAR
INFORMATION TO ANY ACTUAL PERSON, COMPANY
AND/OR ORGANIZATION IS UNINTENTIONAL AND
PURELY COINCIDENTAL.

maranGraphics

Certain text and illustrations by maranGraphics, Inc., used
with maranGraphics’ permission.

Microsoft

©2002 Microsoft Corporation. All rights reserved.

is a trademark of
Hungry Minds, Inc.

Excel Programming: Your visual blueprint for
creating interactive spreadsheets

U.S. Trade Sales

Contact Hungry Minds
at (800) 434-3422
or (317) 572-4002.

U.S. Corporate Sales

Contact maranGraphics
at (800) 469-6616 or
fax (905) 890-9434.

013646-X FM.F 10/16/01 2:35 PM Page ii

Excel Programming
Your visual blueprint for

creating interactive spreadsheets

013646-X FM.F 10/16/01 2:35 PM Page iii

At maranGraphics, we believe in producing great
computer books — one book at a time.

maranGraphics has been producing high-technology
products for over 25 years, which enables us to offer the
computer book community a unique communication
process.

Our computer books use an integrated communication
process, which is very different from the approach used
in other computer books. Each spread is, in essence, a
flow chart — the text and screen shots are totally
incorporated into the layout of the spread. Introductory
text and helpful tips complete the learning experience.

maranGraphics’ approach encourages the left and right
sides of the brain to work together — resulting in faster
orientation and greater memory retention.

Above all, we are very proud of the handcrafted nature
of our books. Our carefully-chosen writers are experts
in their fields, and spend countless hours researching
and organizing the content for each topic. Our artists

rebuild every screen shot to provide the best clarity
possible, making our screen shots the most precise and
easiest to read in the industry. We strive for perfection,
and believe that the time spent handcrafting each
element results in the best computer books money can
buy.

Thank you for purchasing this book. We hope you
enjoy it!

Sincerely,

Robert Maran

President

maranGraphics

Rob@maran.com

www.maran.com

www.hungryminds.com/visual

maranGraphics is a family-run business
located near Toronto, Canada.

013646-X FM.F 10/16/01 2:35 PM Page iv

Hungry Minds Technology Publishing Group: Richard Swadley, Senior Vice President and Publisher; Mary Bednarek,
Vice President and Publisher, Networking; Joseph Wikert, Vice President and Publisher, Web Development Group;
Mary C. Corder, Editorial Director, Dummies Technology; Andy Cummings, Publishing Director, Dummies Technology;
Barry Pruett, Publishing Director, Visual/Graphic Design

Hungry Minds Manufacturing: Ivor Parker, Vice President, Manufacturing

Hungry Minds Marketing: John Helmus, Assistant Vice President, Director of Marketing

Hungry Minds Production for Branded Press: Debbie Stailey, Production Director

Hungry Minds Sales: Michael Violano, Vice President, International Sales and Sub Rights

Acquisitions, Editorial, and
Media Development

Project Editor
Maureen Spears

Acquisitions Editor
Jen Dorsey

Product Development Supervisor
Lindsay Sandman

Copy Editors
Timothy Borek, Jill Mazurczyk

Technical Editor
Allen Wyatt

Editorial Manager
Rev Mengle

Media Development Manager
Laura Carpenter VanWinkle

Permissions Editor
Laura Moss

Media Development Specialist
Angela Denny

Editorial Assistants
Amanda Foxworth, Jean Rogers

Production

Book Design
maranGraphics®

Production Coordinator
Dale White

Layout
LeAndra Johnson, Adam Mancilla,

Kristin Pickett, Jill Piscitelli,
Erin Zeltner

Screen Artists
Ronda David-Burroughs,

David Gregory, Mark Harris,
Jill A. Proll

Cover Illustration
Russ Marini
Proofreaders

John Bitter, Susan Moritz,
Carl Pierce, Christy Pingleton,

Charles Spencer
Indexer

TECHBOOKS Production Services
Special Help

Christy Pingleton, Leslie Kersey

CREDITS

GENERAL AND ADMINISTRATIVE

013646-X FM.F 10/16/01 2:35 PM Page v

Jinjer Simon has been actively involved in the computer industry for the past 17 years. Her involvement
in the industry has included programming, providing software technical support, training end-users,
developing written and online user documentation, creating software tutorials, and developing Web
sites. She is the author of several computer books, including Windows CE For Dummies and Windows CE
2 For Dummies.

Jinjer and her husband live in Coppell, Texas with their two children. She currently works as a
consultant for MillenniSoft, Inc., providing Web site development and online documentation
development.

ABOUT THE AUTHOR

013646-X FM.F 10/16/01 2:35 PM Page vi

As an author, it is always exciting to finish the last chapter and send it to the publisher. At that point my
work ends and many other individuals take on the responsibility of making sure the book actually
makes it to the shelf. Because there are so many individuals involved, I am always concerned about
overlooking someone. Therefore, before I thank specific individuals I would like to acknowledge the
efforts of everyone at Hungry Minds who had a hand in completing the production of this book.

I really enjoyed working with the Hungry Minds team. Jen Dorsey, my acquisitions editor, did a great job
of getting this project up and going, and dealing with all the little issues along the way. My project
editor, Maureen Spears, was great to deal with. She was very patient as I learned how to develop using
the visual blueprint style. Working along with her on the copy editing were Tim Borek and Jill
Mazurczyk, who both did a great job making sure I said everything correctly. Along with them, Leslie
Kersey and Amanda Foxworth helped make the process run smoothly. My technical editor, Allen Wyatt
did a fantastic job of making sure the content is technically accurate.

I also want to acknowledge the efforts of the graphics and production staff who tied everything together.

I want to acknowledge my agents, Neil Salkind and David Rogelberg at Studio B, for helping me get this
project. Finally, I want to thank my husband, Richard, and children, Alex and Ashley, for their patience
while I completed this project.

AUTHOR’S ACKNOWLEDGMENTS

013646-X FM.F 10/16/01 2:35 PM Page vii

viii

TABLE OF CONTENTS

HOW TO USE THIS BOOK .XIV

1) GETTING STARTED WITH EXCEL MACROS
An Introduction to Macros ..2
Record a Macro ..4
Run a Macro ..6
Create and Launch a Keyboard Shortcut ..8
Delete a Macro from a Workbook ..10
Delete from the Personal Macro Workbook ..12
Assign a Macro to a Toolbar Button ..14
Assign a Macro to a Menu ..16
Set Macro Security ..18

2) USING THE VISUAL BASIC EDITOR
An Introduction to the Visual Basic Editor ..20
Activate the Visual Basic Editor ..22
Arrange the Visual Basic Editor Windows ..24
Set Properties for a Project ..26
Set Display Options for the Code Window ..28
Add a New Module ..30
Remove a Module ..32
Rename a Macro ..34
Create a Startup Macro ..36
Hide a Macro ..38
Assign a Digital Signature to a Macro ..40
Update a Recorded Macro ..42

3) VBA PROGRAMMING BASICS
An Introduction to VBA ..44
Create a Subroutine ..50
Create a Function ..52
Declare a Variable ..54
Perform Mathematical Calculations ..56
Create a Constant ..58
Comment Your Code ..60
Join Two Strings ..62

013646-X FM.F 10/16/01 2:35 PM Page viii

4) WORKING WITH THE EXCEL OBJECT MODEL
An Introduction to the Excel Object Model ..64
Using the Object Browser ..66
Create an Object Variable ..68
Change the Properties of an Object ..70
Compare Object Variables ..72
Using an Object Method ..74
Display a Built-in Dialog Box ..76

5) USING VARIABLES AND ARRAYS
Assign Values to Variables ..78
Using Global Variables ..80
Declare an Array ..82
Declare a Multidimensional Array ..84
Convert a List into an Array ..86
Redimension an Array ..88
Create a User-Defined Data Type ..90

6) ADDING CONTROL STATEMENTS
Execute a Task While a Condition is True ..92
Perform Multiple Tasks Until a Condition is Met ..94
Execute Tasks a Specific Number of Times ..96
Using the For Each Next Loop ..98
Conditionally Execute a Group of Statements ..100
Execute a Statement Based Upon the Value ..102
Jump to a Specific Location in a Macro ..104
Conditionally Call a Subroutine ..106

ix

EXCEL PROGRAMMING:
Your visual blueprint for

creating interactive spreadsheets

013646-X FM.F 10/16/01 2:35 PM Page ix

x

7) USING BUILT-IN FUNCTIONS AND STATEMENTS
Using Excel Worksheet Functions ..108
Using the MsgBox Function ..110
Using the InputBox Function ..112
Retrieve Current Date and Time ..114
Determine the Amount of Time Between Dates ..116
Format a Date Expression ..118
Format a Numeric Expression ..120
Remove Extra Spacing from a String ..122
Return a Portion of a String ..124
Compare Two Strings ..126

8) DEBUGGING MACROS
Debugging Basics ..128
Debug a Procedure with Inserted Break Points ..130
Using Watch Expressions to Debug a Procedure ..132
Step through a Procedure ..134
Resume Execution if an Error is Encountered ..136
Process a Runtime Error ..138

9)WORKING WITH OTHER WORKBOOKS AND FILES
Open a Workbook ..140
Open a Text File as a Workbook ..142
Open a File Requested by the User ..144
Save a Workbook ..146
Save Workbook in Format Specified by User ..148
Determine if a Workbook is Open ..150
Close a Workbook ..152
Create a New Workbook ..154
Delete a File ..156
Find a File ..158

10) WORKING WITH WORKSHEETS
Add a Sheet ..160
Delete a Sheet ..162
Move a Sheet ..164

TABLE OF CONTENTS

013646-X FM.F 10/16/01 2:35 PM Page x

xi

EXCEL PROGRAMMING:
Your visual blueprint for

creating interactive spreadsheets

Copy and Paste a Sheet ..166
Hide a Sheet ..168
Change the Name of a Sheet ..170
Save a Sheet to Another File ..172
Protect a Worksheet ..174
Protect a Chart ..176
Print a Sheet ..178
Sort Worksheets by Name ..180

11) DEFINING RANGES
Using the Range Property ..182
Using the Cells Property ..184
Combine Multiple Ranges ..186
Using the Offset Property ..188
Delete a Range of Cells ..190
Hide a Range of Cells ..192
Specify the Name of a Range ..194
Resize a Range ..196
Insert a Range ..198
Set the Width of Columns in a Range ..200
Set the Height of Rows in a Range ..202
Convert a Column of Text into Multiple Columns ..204
Find the Intersection of Two Ranges ..206

12) WORKING WITH CELLS
Cut and Paste Ranges of Cells ..208
Custom Paste Values in Cells ..212
Add Comments to a Cell ..214
Automatically Fill a Range of Cells ..216
Copy a Range to Multiple Sheets ..218
Place Borders Around a Range of Cells ..220
Find Specific Cell Values ..222
Find and Replace Values in Cells ..224

013646-X FM.F 10/16/01 2:35 PM Page xi

xii

TABLE OF CONTENTS

13) CUSTOMIZING DIALOG
BOXES, MENUS, AND TOOLBARS
UserForm Basics ..226
Working with CommandBars ..228
Create a Custom Dialog Box ..230
Call a Custom Dialog Box from a Procedure ..232
Capture Input from a Custom Dialog Box ..234
Validate Input from a Dialog Box ..238
Create Custom UserForm Controls ..240
Create a UserForm Template ..242
Create a Custom Toolbar ..244
Add Controls to a Toolbar ..246
Create a Custom Menu ..248
Add Items to a Menu ..250
Create a Shortcut Menu ..252
Delete Custom Toolbars and Shortcut Menus ..254

14) WORKING WITH CHARTS
Chart Basics ..256
Create a Chart Sheet ..258
Embed a Chart within a Worksheet ..260
Apply Chart Wizard Settings to a Chart ..262
Add a New Data Series to a Chart ..264
Format Chart Text ..266
Create Charts with Multiple Chart Types ..268
Determine Variations in a Series of Data ..270
Add a Data Table to the Chart ..272
Customize the Chart Axis ..274

013646-X FM.F 10/16/01 2:35 PM Page xii

15)AUTOMATING PROCEDURES WITH EXCEL EVENTS
Understanding Excel Events ..276
Run a Procedure as a Workbook Opens ..280
Run a Procedure Before Closing a Workbook ..282
Run a Procedure Before Saving a Workbook ..284
Run a Procedure When Excel Creates a Workbook ..286
Monitor a Range of Cells for Changes ..290
Execute a Procedure at a Specific Time ..292
Execute a Procedure When You Press Keys ..294
Run a Procedure When Right-Clicking a Chart ..296

APPENDIX A: VBA QUICK REFERENCE
VBA and Excel Object Model Quick Reference ..298

APPENDIX B: ABOUT THE CD-ROM
What’s on the CD-ROM ..322
Using the E-Version of the Book..324
Hungry Minds, Inc. End-User License Agreement ..326

EXCEL PROGRAMMING:
Your visual blueprint for

creating interactive spreadsheets

xiii

013646-X FM.F 10/16/01 2:35 PM Page xiii

xiv

HOW TO USE THIS BOOK

Excel Programming: Your visual blueprint for creating
interactive spreadsheets uses simple, straightforward
examples to teach you how to create powerful and
dynamic programs.
To get the most out of this book, you should read each
chapter in order, from beginning to end. Each chapter
introduces new ideas and builds on the knowledge
learned in previous chapters. When you become familiar
with Excel Programming: Your visual blueprint for creating
interactive spreadsheets, you can use this book as an
informative desktop reference.

Who This Book Is For
If you are interested in writing macros for Microsoft Excel
using Visual Basic for Applications (VBA), Excel
Programming: Your visual blueprint for creating interactive
spreadsheets is the book for you.
This book takes you through the basics of using the Visual
Basic Editor that comes with Microsoft Office, and
familiarizes you with the essentials of Visual Basic for
Applications programming. The book also covers the Excel
Object Model, and illustrates how to use the various
objects, properties, and methods to create macros.
Although this book requires no prior experience with
programming, a familiarity with the Microsoft Windows
operating system installed on your computer and
Microsoft Excel is an asset.

What You Need To Use This Book
To perform the tasks in this book, you need a computer
with Microsoft Windows 98, ME, NT 4.0, 2000, or XP
installed, as well as Microsoft Excel 2000 or 2002. You do
not require any special development tools, because all the
tools are part of Excel.

The Conventions In This Book
A number of typographic and layout styles have been used
throughout Excel Macros: Your visual blueprint for creating
interactive spreadsheets to distinguish different types of
information.

Courier Font

Indicates the use of Visual Basic for Applications (VBA)
code such as tags or attributes, scripting language code
such as statements, operators, or functions, and Excel
Object Model code such as objects, methods, or
properties.

Bold
Indicates information that you must type.

Italics
Indicates a new term.

An Apply It section usually contains a segment of code
that takes the lesson you just learned one step further.
Apply It sections offer inside information and pointers that
you can use to enhance the functionality of your code.

An Extra section provides additional information about the
task you just accomplished. Extra sections often contain
interesting tips and useful tricks to make working with
Excel macros easier and more efficient.
Please note that the majority of the tasks in this book
require that you start by creating a new subroutine and
finish by running a macro. Because this book covers
creating a new subroute and running a macro in Chapters
3 and 1, respectively, and because the tasks have limited
space to restate cross-references to these topics, only the
first task of every chapter contains cross-references to
these chapters. The rest of the tasks in each chapter
assume that the read knows the location of these
operations.

013646-X FM.F 10/16/01 2:35 PM Page xiv

xv

The Organization Of This Book
Excel Programming: Your visual blueprint for creating
interactive spreadsheets contains 15 chapters and two
appendixes.
The first chapter, “Getting Started with Excel Macros,”
shows you how work with macros in Excel, how to record a
simple macro, how to assign macros to a menu or toolbar
button, how to launch a macro, and how to remove a
macro from a workbook.
Chapter 2, “Using the Visual Basic Editor,” shows you how
to navigate and work with the Visual Basic Editor that
comes with Microsoft Office applications. This chapter
shows you how to set up your Visual Basic Editor window
to quickly create and modify code modules.
Chapter 3, “VBA Programming Basics,” introduces you to
the essentials of Visual Basic for Applications (VBA). This
chapter also covers some VBA programming fundamentals
that enable you to use the material in the following
chapters to create your own Excel macros.
The fourth chapter, “Working with the Excel Object
Model,” shows you how to work with the Excel Object
Model to access the various elements that make up the
Excel application. This chapter provides a basis for the
information covered in the remainder of the book,
specifically Chapters 9 through 12.
Chapters 5 through 7 build on the VBA programming
language by showing you how to work with variables and
create arrays. You also learn how to use the various control
statements to determine which code is executed within
your macros. You create pop-up dialog boxes using the
MsgBox and InputBox functions.
Chapter 8, “Debugging Macros,” shows you how to the use
the various features of the Visual Basic Editor to find
programming and logical errors within your VBA code.
Chapters 9 through 12 illustrate how you can use the
Workbook, Worksheet, and Range objects to create
custom macros. You also learn how to use the
corresponding properties and methods associated with
these objects.

Chapter 13, “Customizing Dialog Boxes, Menus, and
Toolbars,” shows you how to create a graphical interface
for your macros by creating custom dialog boxes, adding
new toolbars, and creating new menus and menu items.
Chapter 14, “Working with Charts,” shows you how to
create and modify charts from within your macro.
Chapter 15, “Automating Procedures with Excel Events,”
shows you how to capture both user- and system-created
events and use those events to trigger various procedures.
You also learn how to execute a procedure at a specific
time, or how to determine when a specific key sequence is
pressed.
The first appendix contains a reference section. After you
become familiar with the contents of this book, you can
use the references to obtain at-a-glance information for
the VBA statements, functions, and constants used by VBA
functions and Excel Object Model properties and
methods.

What’s on the CD-ROM
The CD-ROM included in this book contains the sample
macro code from each of the two-page lessons in Chapters
5 through 15. This saves you from having to type the code
and helps you quickly get started creating VBA code. The
CD-ROM also contains several shareware and evaluation
versions of programs that you can use to work with Excel
Programming: Your visual blueprint for creating interactive
spreadsheets. An e-version of the book and all the URLs
mentioned in the book are also available on the disc.

EXCEL PROGRAMMING:
Your visual blueprint for

building interactive spreadsheets

013646-X FM.F 10/16/01 2:35 PM Page xv

Using macros enables you to repeat tasks much more
efficiently than tediously performing each step over
and over. A macro is a set of instructions that you

use to automate a task. For example, if you want to take
each column of numbers, convert them to currency, and
then add them together, you can create a simple macro to
perform this task. The typical Excel user has a series of tasks
that they perform frequently. By creating a macro to
perform those tasks, you only require a simple keystroke to
repeat the tasks.

You can create macros to perform a task as simple as
adding two numbers, or as complex as creating a whole
user interface within Excel. To do so, you can employ one,
or a combination, of two different methods: You can use
the Macro Recorder, or you can manually write a macro

using the Visual Basic Editor. Although many macro users
rarely venture past the Macro Recorder, this book shows
you how to harness the power of Visual Basic for
Applications, or VBA, to create more complex macros. No
matter how simple or complex a macro, you write them all
using VBA.

Macros are a term common to the spreadsheet world. All
spreadsheet packages on the market provide the ability to
create macros to automate tasks, and Excel is no exception.
Although all Microsoft Office products provide the ability to
create macros, they are best suited for Microsoft Excel.

As an Excel user, you may have a series of tasks that you
perform frequently. By creating a macro to perform
complex or repetitive tasks, you can save time by pressing a
simple keystroke each time you want to perform the tasks.

AN INTRODUCTION TO MACROS

Macro and Lotus 1-2-3

Macros originated with Lotus 1-2-3 in a fashion similar
to the Macro Recorder you find in Excel today. The
Lotus macros recorded the keystrokes and enabled you
to play them later.

XLM Macro Sheets

Microsoft first entered the macro world with XLM
macro sheets. XLM macro sheets are just sheets of
functions that Excel evaluates in the sequence they
exist within the selected macro. Although this macro
language was powerful, it was difficult to use. Although
Excel still supports XLM macro sheets for compatibility
with early versions of Excel, it does not provide the
ability to record an XLM macro.

VBA Macros

The addition of Visual Basic for Applications (VBA)
macros increased the popularity of Excel within the
spreadsheet world. Essentially a subset of the popular
Visual Basic language, VBA is familiar to many
developers.

Also, VBA brings a much more powerful macro
development platform to Excel than the macro
development environment in other spreadsheet
packages.

Excel Macros

Although Microsoft did not originate the concept of
macros and spreadsheets, they have definitely built
upon it. The combination of the Macro Recorder and
VBA makes macro creation a powerful feature of Excel.

2

MACRO HISTORY

EXCEL PROGRAMMING

023646-X Ch01.F 10/16/01 2:36 PM Page 2

3

GETTING STARTED WITH EXCEL MACROS

Macro Recorder

The Macro Recorder provides a great method for
creating a macro without writing VBA code directly.
The Macro Recorder holds true to its name. Just like a
tape recorder, when you turn it on, it records all the
events that occur within Excel. Excel takes the recorded
events and creates the VBA code necessary to recreate
the events. You can modify all macros you create with
the Macro Recorder in the Visual Basic Editor. The
Macro Recorder works well for creating simple macros,
such as a macro that adds a column of numbers, or
changes the layout of the page. But due to the fact that
the Macro Recorder creates a macro by recording your
actions, it cannot create a complex macro such as one

that repeats a process until meeting a specific
condition or displays a custom dialog box. More
complex Excel macros require the use of VBA.

The Macro Recorder does work well in conjunction
with the Visual Basic Editor. For example, if you want to
create a macro that sums each column of data in your
worksheet, you record the macro that sums a column.
You then edit the macro in the Visual Basic Editor to
run the macro until Excel process all columns.
Combining the use of the Macro Recoder and the
Visual Basic Editor simplifies the macro creation by
allowing Excel to code part of it for you. See the
section “Record a Macro” for more information on
recording a macro in Excel.

Macro Storage

The Store macro in option on the Macro dialog box
instructs Excel where to store the macros you record.
Excel provides three different storage locations for your
macros: the current workbook, a new workbook, or the
Personal Macro Workbook.

You can store a recorded macro to your current
workbook, commonly referred to as the active
workbook, by selecting the This Workbook option. Use
this option if you plan to share the workbook with
other users. Storing the macros in the active workbook
makes macros available to any user who opens the
workbook.

You can record a macro to a New Workbook. Excel
creates the workbook automatically and adds the new
macro to it. If you store a macro in another workbook,
you need to open that workbook whenever you want
to use that macro. You store macros in separate
workbooks when you want to store specific types of
macros in different workbooks. For example, you may

want to place all macros that perform budget
calculations in one workbook.

You can record a global macro by selecting Personal
Macro Workbook, which serves as a common storage
location for macros that you expect to use with other
workbooks. Excel stores your Personal Macro
Workbook as Personal.xls in the XlStart folder. This
workbook does not exist until you store a macro in it.
After you create the workbook, it loads whenever you
run Excel as a hidden workbook. Excel hides the
Personal Macro workbook so that you are unaware of it
being open.

The storage location you select for a macro depends on
where you want access to the macro. If you create the
macro with the Macro Recorder, you can select the
storage location of the macro when you create it on
the Record Macro dialog box.

See the section “Record a Macro” for more information
about storing macros.

RECORD AND STORE MACROS

1

023646-X Ch01.F 10/16/01 2:36 PM Page 3

⁄ Click the worksheet cell
to contain the results of the
macro.

� If you intend to use other
worksheet cells in your
macro, make sure the cells
contain the desired values.

¤ Click Tools ➪ Macro ➪
Record New Macro.

� The Record Macro dialog
box displays.

‹ Type a unique name for
the macro.

� You can also create a
keyboard shortcut for your
macro by typing the desired
shortcut key in the Shortcut
Key field.

› Click here to select a
location where you want to
store the macro.

Note: See the section “An
Introduction to Macros” for more on
the three areas to store a macro.

ˇ Click OK.

You can use macros to automate a series of steps. The
easiest method for creating a macro involves using the
Macro Recorder option, which captures everything

you do and saves it in a macro module with the name you
specify. After you create the macro, you can run the macro
again, modify it, or delete it.

Because the Macro Recorder records every action you
perform when you use it, consider planning your steps
before creating the macro. Because each macro action takes
time to record, when you plan out the macro steps, the
macro runs faster and more effectively. When you name a
macro, use a name that starts with a letter and has no
spaces in it; you can, however, use the underscore character
to separate words.

Excel creates the macro with either relative or absolute
reference to the cell where you apply it. You can specify
the cell reference by selecting the Relative Reference
button on the Stop Recording toolbar. If you select Relative
Reference, the macro uses relative references, meaning that
it performs the macro based upon the location of the cell.
For example, you can have a macro add the values in the
first four cells of a worksheet and place the total sum in a
cell you select. With absolute positioning, however, the
macro records in absolute mode and remembers the
specific cells you use to record the macro. For example, the
macro remembers always to add the same cells, such as A1
through A5, and place the total sum in cell A6. You can
toggle between relative and absolute referencing while
recording your macro via the Reference button.

RECORD A MACRO

4

RECORD A MACRO

EXCEL PROGRAMMING

023646-X Ch01.F 10/16/01 2:36 PM Page 4

� The Stop Recording
toolbar appears.

� The status bar reminds you
that a macro is recording.

Á Press the appropriate key
strokes to record the macro.

‡ When complete, click the
Stop Recording button ().

� Excel records the macro
and the Stop Recording
toolbar no longer displays
on the screen.

GETTING STARTED WITH EXCEL MACROS

When you create a new macro, you have the option
of assigning it to a keyboard shortcut by typing the
shortcut in the Keyboard Shortcut box on the Record
Macro dialog box. When you do this, the macro runs
when you press the Ctrl key and the specified
lowercase key simultaneously. If you specify an
uppercase letter for the key, you can run the macro by
pressing Ctrl+Shift+the specified key. Unfortunately,
Excel does not stop you from creating shortcuts that
override other predefined Excel shortcut keys. If you
specify a shortcut key combination that matches a
Microsoft Excel shortcut, your new shortcut overwrites
it; each time you press the shortcut keys, your macro —
not the Microsoft key combination — runs. For
example, the Save command shortcut is Ctrl+s. If you
create a macro with a shortcut key of s, your macro
runs instead of the Save command when you press
Ctrl+s. Excel does use many of the available shortcut
keys, so you are bound to overwrite one. Keep in
mind that if you use an Excel shortcut, you do not
want to create a macro shortcut that overwrites it.

5

1

023646-X Ch01.F 10/16/01 2:36 PM Page 5

⁄ Click File ➪ Open. � The Open dialog box
displays.

¤ Click the workbook
containing the macro you
want to run.

Excel allows you to run macros in a worksheet that
exists either in the current workbook or in any other
Excel workbook. However, you can only run a macro

from any other workbook as long as you have the
corresponding workbook open within Excel. When you run
a macro, Excel re-creates the recorded steps that you
performed to create it, or it runs the VBA code that you
created in the Visual Basic Editor. See the section “Record a
Macro” to learn how to record a macro and Chapter 3 for
more information on the Visual Basic Editor.

You select macros to run from the Macro dialog box, which
lists all currently available macros. Available simply means
that Excel can locate the macro in an open workbook.
Because Excel only knows about macros in open
workbooks, you must open the workbook containing the
macro you want to run.

When you create a macro, Excel stores it in one of three
locations, the current workbook, a new workbook, or the
Personal Macro Workbook. Excel opens the Personal Macro
Workbook as a hidden file each time you run Excel, and
makes all macros you store there available to run with any
workbook. If you store a macro in a separate workbook,
you must open the workbook containing the macro in
Excel. You can learn more about creating a macro in the
section “Record a Macro.”

To run a macro from another workbook, you must have a
macro from a signed source, or you must set your macro
security to either Medium or Low. The default macro
security level, High, requires that all macros from other
sources be signed. Setting your macro security to Medium
or Low lets you run unsigned macros. See section “Set
Macro Security” for more information about macro security.

RUN A MACRO

6

RUN A MACRO

EXCEL PROGRAMMING

023646-X Ch01.F 10/16/01 2:36 PM Page 6

� The selected workbook
opens.

‹ Click the cell where you
want the macro to execute.

› Click Tools ➪ Macro ➪
Macros.

� The Macro dialog box
displays a list of available
macros.

� If the macro is not listed,
you can click here and click
the location of the macro.

ˇ Click the macro you want
to run.

Á Click Run.

� The selected macro
executes and makes the
appropriate changes to the
worksheet.

� To run the macro again,
repeat steps 3 through 6.

GETTING STARTED WITH EXCEL MACROS

You can use the Macros In field to limit the
number of macros that display on the Macro
dialog box. To see the macros in any open
workbook, including the Personal Macro
Workbook, you can click the and click the All
Open Workbooks option. If you only want to see
macros from a specific workbook, select the
name of the desired workbook in the Macros In
drop-down list. For the global macros stored in
the Personal Macro Workbook, you need to
select the PERSONAL.XLS option.

Excel differentiates between macros listed in the
Macro dialog box by placing the name of the
workbook that contains the macro in front of the
macro name. For example, Excel lists a macro
named Sum_Expenses in the Personal Macro
Workbook as PERSONAL.XLS!Sum_Expenses.
Because of this nomenclature, two workbooks can
have macros with the same name. In other words, if
the macro Sum_Cells exists in both the Budget.xls
and Expenses.xls workbooks Excel treats them as
two different macros because they are stored in two
different locations. The Macro dialog box lists the
macros as Budget.xls!Sum_Cells and
Expenses.xls!Sum_Cells.

7

1

023646-X Ch01.F 10/16/01 2:36 PM Page 7

⁄ On the Macro dialog box,
click the desired macro.

� You can click Tools ➪
Macro ➪ Macros to display
the Macro dialog box.

Note: See the section “Run a Macro”
for more on the Macro dialog box.

¤ Click Options.

� The Macro Options dialog
box displays for the selected
macro.

‹ Type the desired shortcut
key in the Shortcut Key box.

� When you type an
uppercase character in the
field, a message appears,
reminding you to type
Ctrl+Shift+shortcut key.

› Click OK to save the
shortcut key.

T

Excel provides the option of keyboard shortcuts to
allow you to quickly launch a command, or even a
macro, from the keyboard by pressing a combination

of keys. With the use of a keyboard shortcut, you can
activate a macro by pressing both the Ctrl key and the
macro’s shortcut key. You assign keyboard shortcuts to a
macro during the macro creation, or at any time after you
create the macro. See the section “Record a Macro” for
more information on creating a macro.

Keyboard shortcuts in Excel are case sensitive. Excel
interprets a lowercase s and an uppercase S as two different
keys. By using uppercase and lowercase letters, Excel
provides more shortcut keys that you can assign to a macro.
To execute a macro that has an uppercase letter for the key,
such as M, you press Ctrl+Shift+M.

The downside to assigning shortcut keys to a macro is that
you have to remember the assigned shortcut. If you forget
your shortcut assignment for a selected macro, you can
view it in the Macro Options dialog box, which you access
via the Macro dialog box.

Excel allows you to assign any key as the shortcut for your
macro. If Excel uses the same the key as a shortcut key for a
standard Excel option, your shortcut definition overrides the
Excel definition. For example, when you press Ctrl+O, Excel
opens the Open dialog box, enabling you to select a
workbook to open. If you create a shortcut key macro of o,
your macro executes whenever you press Ctrl+O instead of
displaying the Open dialog box. With this in mind, avoid
using shortcut keys that you use for other common Excel
tasks.

CREATE AND LAUNCH A
KEYBOARD SHORTCUT

EXCEL PROGRAMMING

8

CREATE A KEYBOARD SHORTCUT

023646-X Ch01.F 10/16/01 2:36 PM Page 8

LAUNCH A KEYBOARD SHORTCUT

T

⁄ Click the cell where you
want the macro to execute.

¤ Press Ctrl and the shortcut
key to activate the macro.

� The selected macro
executes and makes the
appropriate changes to the
worksheet.

‹ To run the macro again,
repeat steps 1 and 2.

GETTING STARTED WITH EXCEL MACROS 1

When you use shortcut keys for
macros in other workbooks, you may
not always receive the correct macro
to execute. Excel does not let you
assign a shortcut key if a macro in your
current workbook uses the shortcut,
but it does not check unopened
workbooks. If you open workbooks
with the same shortcut key, Excel does
not know which macro to execute
when you select the shortcut. If you
use the shortcut keys for a macro and
do not receive the anticipated results,
you need to verify what you assigned
to the shortcut keys.

If you find that the shortcut keys are
the same as another available macro,
you can reassign a shortcut key to a
macro from the Macro dialog box by
clicking the macro and then clicking
Options to display the Macro Options
dialog box. Type the desired shortcut
key and click OK. To make the shortcut
key modification permanent, save the
workbook that contains the macro.
Keep in mind, that you may find it
easier to simply change a lowercase
shortcut to uppercase, or vice-versa.

9

023646-X Ch01.F 10/16/01 2:36 PM Page 9

T

⁄ Click Tools ➪ Macro ➪
Macros.

� The Macro dialog box
displays a list of available
macros.

¤ Click the macro you want
to delete.

� If the Macro dialog box
does not list the macro, click
the location of the macro.

‹ Click Delete.

Macro1

You can remove macros from any workbook to reduce
your list of available macros. Similar to cleaning a
closet, you want to eliminate the stuff you no longer

need.

When you delete a macro, Excel removes the actual macro
without affecting any changes previously applied to the
workbook with that macro. For example, if you use the
macro to sum a series of cells, the sum remains the same
when you delete the macro. Excel immediately applies the
macro changes to the worksheet and then no longer relies
on it to maintain any future changes you make.

To delete a macro, you must open the workbook containing
the macro because you can only see macros within open
workbooks in Excel.

You use the steps in this section to store your macro in
unhidden workbooks. If you can open the workbook with
the Open command on the File menu, Excel does not hide

the workbook. You cannot see hidden workbooks when
you view the available workbooks in a folder. A good
example of a hidden workbook is the Personal Macro
Workbook, which loads automatically when you run Excel.

To delete a macro that you store in the Personal Macro
Workbook, you need to perform different steps. See the
section “Delete From the Personal Macro Workbook” for
more information on working with the Personal Macro
Workbook or any other hidden workbook.

Remember that you cannot undo the deletion process. If you
delete the wrong macro, you can only restore it by recording
it again. If you do not want to recreate an unintentionally
deleted macro, try closing the workbook without saving it
and then reopen the workbook. This eliminates any changes
made since your last save, and restores any deleted macros.
Of course, you lose any other changes you made to the
workbook if you close without saving.

DELETE A MACRO FROM A WORKBOOK

EXCEL PROGRAMMING

10

DELETE A MACRO FROM A WORKBOOK

023646-X Ch01.F 10/16/01 2:36 PM Page 10

T

� A message box appears
asking if you want to delete
the macro.

› Click Yes to delete the
macro.

� If the macro listed is not
the one you intended to
delete, click No.

� Excel deletes the macro
from the workbook.

GETTING STARTED WITH EXCEL MACROS

When you delete a macro, Excel only deletes the
macro. If you add the macro to a menu or
toolbar button, they retain the macro reference.
If you select one of these options after deleting a
macro, an error message displays indicating that
Excel cannot find the macro. See the sections
“Assign a Macro to a Toolbar Button” and “Assign
a Macro to a Menu” for more information about
assigning macros to toolbars and menus.

To remove menu options and toolbar buttons, click
Tools ➪ Customize to display the Customize dialog
box. You can only modify menus and toolbars within
Excel when the Customize dialog box displays on the
screen. While the Customize dialog box displays, you
can right-click the desired icon or menu option and
select the Delete option to remove it, or you can
click the button or menu option and drag it onto the
Customize dialog box. Keep in mind that dragging a
toolbar or menu option onto the Customize dialog
box does not add it to the Customize dialog box.

11

1

023646-X Ch01.F 10/16/01 2:36 PM Page 11

T

⁄ Click Window ➪ Unhide. � The Unhide dialog box
displays a list of open
workbooks that are currently
hidden.

¤ Click PERSONAL.

‹ Click OK.

PERSONAL

You can delete macros that you no longer use from the
Personal Macro Workbook. The Personal Macro
Workbook stores macros that you want to make

available to all workbooks. Excel creates the Personal Macro
Workbook when you store your first macro in it. After Excel
creates the Personal Macro Workbook, the workbook opens
as a hidden file whenever you run Excel. You can only tell
that a hidden file exists by viewing the Macro dialog box,
where Excel lists the macros used by the Personal Macro
Workbook.

Excel stores the Personal Macro Workbook as a file named
Personal.xls with a typical path of C:\documents and settings\
user_name\Application Data\Microsoft\Excel\XLSTART folder.

If you try to delete a macro out of the Personal Macro
Workbook from the Macro dialog box, Excel displays a
message box with the message, “Cannot edit a macro in a
hidden workbook. Unhide the workbook using the Unhide

command.” By default, Excel does not allow you to delete
macros out of hidden workbooks. Because Excel hides the
Personal Macro Workbook, you cannot delete the macros in
it without first unhiding the workbook using the Excel
Unhide command.

After you delete the macro from the workbook, make sure
that you hide the workbook again. If you do not hide the
Personal Macro Workbook again, the workbook appears as an
open workbook. Because you only use this workbook for
storing globally used macros, you do not want to make other
types of modifications to it. By hiding it, you keep it out of the
way and eliminate the possibility of having unwanted changes
made to it.

You can also use the Visual Basic Editor to remove macros
from the Personal Macro Workbook. See Chapter 2 for
more information about removing macros using the Visual
Basic Editor.

DELETE FROM THE PERSONAL
MACRO WORKBOOK

EXCEL PROGRAMMING

12

DELETE FROM THE PERSONAL MACRO WORKBOOK

023646-X Ch01.F 10/16/01 2:36 PM Page 12

� The Personal Macro
Workbook is unhidden and
displays in the Excel Window.

› Click Delete to remove
the macro from the
workbook.

Note: For information about deleting a
macro, see the section “Delete a
Macro.”

ˇ After modifications are
complete, click Window ➪
Hide.

� The workbook is hidden.

PERSONAL

GETTING STARTED WITH EXCEL MACROS

Typically, you do not share the Personal Macro Workbook with other users.
Excel creates a different Personal Macro Workbook for each username on a
machine. If you have multiple users on your computer with different
usernames, Excel creates a different Personal Macro Workbook for each
user. You can share a Personal Macro Workbook between different users,
even on the same computer, by copying the workbook. You can use the
Windows Explorer and copy the workbook from one user to another if you
want to make the macros in that workbook available to other users. To do
so, make sure you copy the PERSONAL.XLS file to the C:\documents and
settings\user_name\Application Data\Microsoft\Excel\XLSTART folder from
the user workbook you want to share to each user’s corresponding folder.
Keep in mind, you can only have one PERSONAL.XLS file for each user. If a
user already has a Personal Macro Workbook, you can overwrite it with the
new one. Of course, if you overwrite an existing Personal Macro Workbook,
Excel no longer makes any macros you store in the workbook available. To
eliminate potential problems you should rename the existing workbook so
that a user can still access it if necessary.

13

1

023646-X Ch01.F 10/16/01 2:36 PM Page 13

⁄ Click Tools ➪ Customize. � The Customize dialog box
displays options for updating
menus and toolbars.

¤ Click the Commands tab.

‹ Click Macros.

› Click the Custom Button
option.

ˇ Drag the option to the
desired location on the
toolbar.

� As you drag the button
across the toolbar, Excel
inserts a line to indicate
the location.

Macros

You can assign any macro to an Excel toolbar. Excel
uses toolbars to provide quick access to commonly
used commands. You can make macros more

accessible by creating a button on a toolbar to execute a
macro. By doing this, you also do not have to remember the
shortcut key that launches the macro. If you create a macro
toolbar button, each time you want to run the macro, you
simply Click the appropriate button.

When you add a button to a toolbar, it remains on that
toolbar for all the workbooks you open in Excel. In other
words, even if the active workbook does not have access to
the macro because you closed the corresponding
workbook, the Toolbar button still displays. For that reason,
you should assign a macro that exists in your Personal
Macro Workbook to a toolbar button to make the macro
available from all workbooks. Remember that the Personal

Macro Workbook stores commonly used macros, and opens
as a hidden file each time you run Excel. Excel always keeps
the Personal Macro Workbook open and, therefore, makes
any macros you have in the Workbook always available for
use by other workbooks that you open. For more on macro
storage, see the section “An Introduction to Macros.”

You can add buttons to any of the existing Excel toolbars, or
you can create new toolbars for your buttons. By creating a
separate toolbar for your macros you keep your custom
macros together in one location and you avoid ruining
existing toolbars. You can select the toolbars to display in
Excel on the Customize dialog box. Of course, you need to
display a toolbar in Excel before you can add buttons to it.
You also display the Customize dialog box to add buttons to
toolbars.

ASSIGN A MACRO TO A TOOLBAR BUTTON

14

ASSIGN A MACRO TO A TOOLBAR BUTTON

EXCEL PROGRAMMING

023646-X Ch01.F 10/16/01 2:36 PM Page 14

Á Release the mouse button.

� The button appears on the
toolbar.

‡ Right-click the toolbar
button to display a menu of
options.

Note: You must have the Customize
dialog box open to customize the
button on the toolbar.

° Click Assign Macro.

� The Assign Macro dialog
box displays a list of currently
available macros.

· Click the name of the
macro you want to assign to
the new button.

‚ Click OK.

� The macro runs each time
you select the button.

GETTING STARTED WITH EXCEL MACROS

Chances are you do not want to keep the default
smiley face button image that Excel inserts on
the toolbar. You can change the image by using
one of two different options on the menu that
appears when you right-click the mouse over the
toolbar button when you have the Customize
dialog box open. If you want to select an image
from a list of existing images, you can click the
Change Button Image option. If you do not like
the images on the Change Button Image menu,
you can also create your own button image on
the Button Editor dialog box. To change the
button image, click the Edit Button Image option
on the menu.

Changing the button image is similar to a paint-by-
number exercise you did as a kid. You have 16
different colors that you can use to create the new
image. Click the desired color and then click the
pixel of the image that you want to modify. You can
also move the image within the window by clicking
and dragging it. The maximum size of the button
image is 16x16 pixels or the contents of the window.
When you close the dialog box the button image
updates.

15

1

023646-X Ch01.F 10/16/01 2:36 PM Page 15

⁄ Click Tools ➪ Customize. � The Customize dialog box
appears.

¤ Click the Command tab.

‹ Click Macros.

› Click the Custom Menu
Item option.

ˇ Drag the item to the
desired menu.

� The menu expands and a
line indicates your position in
the menu.

Á Release the mouse button.

You can assign a macro to any existing Excel menu. If
you do not want to use existing menus, you can even
create a new menu. By assigning a macro to a menu,

you make the macro as accessible as any menu option.
Assigning macros to menus eliminates the need to
remember the shortcut key required to launch the macro.

When you add a macro to a menu, it remains on the menu
for all workbooks that you open in Excel. For that reason,
you should assign a macro that exists in your Personal Macro
Workbook to a menu to ensure that all workbooks can
access the macros. The Personal Macro Workbook stores
commonly used macros for the current user, and opens as a
hidden file each time you run Excel. Because the Personal
Macro workbook is always open, any workbook can use all
of the macros it contains. To learn more about the Personal

Macro Workbook, see the section “An Introduction to
Macros.”

You can assign the macro to any available menu, however,
to keep your macros easy to find, you may want to place
them all on one custom menu. You can create a new Excel
menu using the Customize dialog box. Of course, whatever
menu you decide to use as a home for your macro must
exist on the Excel window before you can add the macro
option to it.

You add options to a menu by dragging them onto the menu
from the Customize dialog box. In fact, you can modify
menus only while the Customize dialog box displays. You
can remove menu options in a similar fashion by dragging
them from the menu back to the Customize dialog box.

16

ASSIGN A MACRO TO A MENU

EXCEL PROGRAMMING

ASSIGN A MACRO TO A MENU

023646-X Ch01.F 10/16/01 2:36 PM Page 16

Change Font

‡ Right-click the menu
option.

° Click Name.

· Type the desired name for
the macro menu option in the
field.

‚ Click Assign Macro.

� The Assign Macro dialog
box appears.

— Click the name of the
macro you want to assign to
the new menu option.

± Click OK.

� The macro runs each time
you select the menu option.

GETTING STARTED WITH EXCEL MACROS

You can create a custom menu for macros you
place on a menu. This keeps all the macro
references in one location and prevents clutter
on the existing Excel menus. To create a new
menu, open the Customize dialog as described
in the steps on this page. On the Customize tab
select the New Menu option as the desired
category. A New Menu option displays as the
available command. Click the New Menu option
and drag it to the desired menu location. After
you add the menu, you can right click it, and
change the name, which makes it ready to
receive your macros.

When you name a menu option you can also create
a shortcut key that corresponds to the menu
option. Similar to the shortcuts you create for
macros, the menu option shortcut launches
whatever command you assign to the menu option.
Also, these shortcuts launch with the Alt key. To
create a menu shortcut, you need to type a &
before the character in the menu item name that
corresponds to the shortcut key. For example, if you
want Alt+T to launch the menu option “Determine
Total,” you place the & before the letter T:
“Determine &Totals.”

17

1

023646-X Ch01.F 10/16/01 2:36 PM Page 17

SET SECURITY

⁄ Click Tools ➪ Macro ➪
Security.

� The Security dialog box
displays.

¤ Click the Security Level
tab.

‹ Click the desired security
level („ changes to ´).

› Click OK.

� Excel assigns a security
level.

Due to the increasing problem with computer viruses,
specifically macro viruses, by default, Excel disables
all macros in worksheets that you open, except

those with a signature from a trusted source. You can have
Excel open all macros regardless of source, or prompt you
before opening unsigned macros, by modifying the macro
security level.

Digital signatures, which a creator uses to verify a macro’s
safety, remain attached to a macro or other file so long as
no one modifies the macro or file. Macro modifications
require you, as the creator, to reattach the signature. A
macro with a valid digital signature confirms the macro’s
origins and that no one altered it.

Depending how you use Excel — and whether you open
workbooks from other sources — you may want to modify
the security type that Excel uses to open workbooks
containing macros. The three security settings include:

• High: The default, selecting this level disables all
unsigned macros, even ones you create. You have the
option of selecting macros from other trusted sources
when you run Excel.

• Medium: With this level you can specify whether you
want to run macros from trusted and unsigned sources
when you load Excel. Select this level if you want to
eliminate the hassle of signing the macros you create.

• Low: Excel automatically loads all workbooks and
macros without checking to see if they are from trusted
sources. With this setting, the only protection from
macro viruses is a good virus scanner.

To eliminate the hassle and expense of acquiring a digital
certificate, you can personally sign your macros by running
SelfCert.exe, an Office XP program. Creating and attaching
your personal signature indicates that you certify the
security of a macro, identifies macros you create, and
distinguishes your macros from other macros.

SET MACRO SECURITY

18

SET MACRO SECURITY

EXCEL PROGRAMMING

023646-X Ch01.F 10/16/01 2:36 PM Page 18

SELFCERT

CREATE A PERSONAL
SECURITY CERTIFICATE

⁄ Open Microsoft Windows
Explorer.

¤ Click the Office10
subfolder of the Microsoft
Office folder.

Note: If you performed a typical Office
XP installation, Excel locates your
program files in C:\Program
Files\Microsoft Office.

‹ Double-click the
SelfCert.exe program file.

� The Create Digital
Certificate dialog displays.

› Type your name.

ˇ Click OK.

� Excel creates a digital
certificate.

Note: See Chapter 2 to assign the
certificate to your macros.

GETTING STARTED WITH EXCEL MACROS

Assigning a certificate you create with
SelfCert.exe to a project indicates the project is
self-signed and not authenticated. This option
works well for personal workbooks. However, if
you plan to distribute your workbook to other
users you probably want to consider acquiring a
true digital signature file. When you use a
commercial digital signature file, the digital ID
attaches to the macro. The Digital ID remains
with the macro, and—if someone alters the
macro in any way—notifies the user when the
user should not trust the macro. This ensures that
a macro you create does not harm another
person’s machine.

The most common location for obtaining a digital
certification is from VeriSign, Inc. Of course, to
obtain a commercial certification, you have to
submit an application and pay the appropriate fee.
You can find out more about obtaining a digital
certification for your macro at www.verisign.com.
Another company that you can contact for a digital
ID is Thwate Consulting. You can find out about
their digital signature options at:www.thwate.com.

19

1

023646-X Ch01.F 10/16/01 2:36 PM Page 19

You write Visual Basic Applications, or VBA code,
required to create complex macros, using the Visual
Basic Editor (VBE), acessible via all Microsoft Office

applications, including Excel. Arranged in a series of
windows, which you can move around with your mouse to
obtain the desired development layout, the VBE contains

project information. The Visual Basic Editor remembers the
window locations you set up each time you open it. By
default, not all windows display when you initially open the
Visual Basic Editor, but you can select the windows you
want to view from the View menu.

AN INTRODUCTION TO THE
VISUAL BASIC EDITOR

EXCEL PROGRAMMING

20

VIEW OF THE VISUAL BASIC EDITOR

Microsoft Visual Basic - PERSONAL.XLS

PERSONAL.XLS - Module1 (Code)

OBJECT LIST BOX

Lists objects associated
with the selected project.

PROCEDURE LIST BOX

Lists the procedures
associated with the
selected object.

CODE WINDOW

Displays the VBA source
code in the selected module.

PROJECT EXPLORER
WINDOW

Displays the list of the
open projects and
corresponding modules,
objects, and forms, using
nodes to represent each
item type.

IMMEDIATE WINDOW

Provides immediate results
for statements typed in
the window.

LOCALS WINDOW

Shows values of local
variables during debugging.

WATCHES WINDOW

Shows the set watches
during debugging.

PROPERTIES
WINDOW

Displays properties for the
currently selected object.

033646-X Ch02.F 10/16/01 2:36 PM Page 20

21

USING THE VISUAL BASIC EDITOR 2
NODES OF THE VBE PROJECT WINDOW

Microsoft Excel Objects

This folder contains a node for each sheet within the
selected workbook. Each sheet node represents either a
worksheet or a chart sheet. When you double-click a
particular node, the corresponding code module opens.
You can place independent procedures within a specific
sheet module, but typically, these procedures are placed
in the standard modules. You can place code that
triggers upon the occurence of a specific event, such as
opening a workbook, in the ThisWorkbook node.

Forms

This folder node displays only if you create custom
forms for the specific project. If so, Excel creates a node
for each form in the selected project. Forms are also
refered to as UserForms or custom dialog boxes. You
can create custom forms or dialog boxes that resemble
the dialog boxes used throughout Excel. Macros use
these forms to enable the user to interact with the
macro. See Chapter 13 for more information about
creating custom forms.

Modules

The Project Explorer lists a node for each module within
the project. Modules contain general procedures, either
functions or subroutines. Excel creates a new module
for a project each time you add a new macro to the

corresponding workbook. You can add other modules
within the Visual Basic Editor, as outlined later in this
chapter. Not all modules contain macros that are visible
within Excel. You can create hidden procedures that are
called by other functions and subroutines.

VBE AND INTELLISENSE TECHNOLOGY

To make adding VBA code easier, the Visual Basic Editor
uses Microsoft’s IntelliSense technology, which helps
you find the properties and methods for the objects you
use in your macro scripts. As you type the name of an
object, a list of available properties and objects display

from which to select. You can select from this list by
clicking the selection with the mouse. Any property or
method that you select appears in your code in the
Code window.

The Project Explorer window, or Project window,
resembles the treelike structure used by the Windows
Explorer folders pane. The Visual Basic Editor refers to
each entry in the Projects window as a node. The top
nodes, which display in bold, represent the Excel VBA
projects currently open. Excel opens a new VBA project

for each workbook that opens in Excel. Because the
Personal Macro Workbook also opens when you run
Excel, you see it listed as one of the open projects in the
Project Explorer. Each project has three nodes
containing project elements:

PROPERTIES WINDOW

The Properties window displays the properties for the
selected object. If you select a module in the Project
Explorer, the only properties you see in the Properties
window is the module name. If you select a specific sheet,
however, you can view and modify properties for a sheet
such as whether page breaks display.

To change the properties for an object, you simply click
the property and make the desired changes. Some
property fields, such as Name, require you to type a
value. Other fields have drop-down lists where you can
select the appropriate value. If you find that you cannot
change its property, it is probably read-only and you
cannot modify it.

033646-X Ch02.F 10/16/01 2:36 PM Page 21

Macro

Visual Basic Editor

Alt=F11 (Name)

OPEN THE VBE USING THE MENU

⁄ Click Tools ➪ Macro ➪
Visual Basic Editor.

� The Visual Basic Editor
displays with the window
layout you last used.

You can only run the Visual Basic Editor from a
Microsoft Office application. The Visual Basic Editor
provides the ability to create and modify Excel macros

using Visual Basic for Applications, or VBA. You can activate
the Visual Basic Editor by editing a macro that you recorded
with the Macro Recorder, or you can open the editor
directly from the Tools menu via the Visual Basic Editor
option. Whether you create a macro using the Macro
Recorder or in the Visual Basic Editor, you write all source
code using VBA. Of course, with the Macro Recorder, Excel
takes the key strokes that you record and converts them all
to VBA.

When you open the Visual Basic Editor, the Project Explorer,
if displayed, indicates your location within the project. If you
open an existing macro from the Macro dialog box within
Excel, the Project Explorer highlights the corresponding
module in the tree and the VBA code for the macro appears

in the Code window. When you select the Visual Basic Editor
directly, however, the Project Explorer highlights the name of
the current project, which is the name of the workbook
open in Excel. You can select a specific module in a project
by double-clicking the module node in the Project Explorer.
To learn more about nodes and the structure of the Project
Explorer, see the section, “An Introduction to the Visual Basic
Editor.”

Keep in mind that if the Personal Macro Workbook,
Personal.xls, contains macros, the project for the
Personal.xls project always opens when you access the
Visual Basic Editor. Although the Personal Macro Workbook
is hidden within Excel, in the Visual Basic Editor you can
view and modify all macros in the Personal Macro
Workbook.

See Chapter 3 for more information on using Visual Basic
for Applications (VBA).

ACTIVATE THE VISUAL BASIC EDITOR

22

ACTIVATE THE VISUAL BASIC EDITOR

EXCEL PROGRAMMING

033646-X Ch02.F 10/16/01 2:36 PM Page 22

PERSONAL.XLS!Calculate_Expenses

PERSONAL.XLS!Calculate_Expenses

(Name)

OPEN THE VBE FROM THE
MACRO DIALOG BOX

⁄ Open the Macro dialog
box by clicking Tools ➪
Macro ➪ Macros.

¤ Click to highlight the
macro you want to modify.

‹ Select Edit.

� The Visual Basic Editor
displays the code for the
selected macro in the Code
window.

� The module containing the
macro is highlighted in the
Properties window.

USING THE VISUAL BASIC EDITOR

To make the
Visual Basic
Editor easier to
navigate,
Microsoft
provides different
shortcut keys.
These shortcuts
work when the
Visual Basic
Editor window
has focus. A
window has focus
when it is the
selected window.
For example, you
can only type text
in the selected
window.

23

SHORTCUT KEY DESCRIPTION

F7 Switches to the Code window for the selected object (node) in the
Project Explorer. If the Code window for that object is not open, it
opens and displays on top of any other code windows.

F4 Switches to the Property window and displays the properties for
the selected object. If the Property window is not open, the Visual
Basic Editor opens it in the location where you last viewed it.

Ctrl+R Switches to the Project Explorer. If the Project Explorer window is
not open, the Visual Basic Editor opens it in the location where you
last viewed it.

Alt+F11 Toggles between the Visual Basic Editor and Excel. This shortcut is
useful when you step through a macro. See Chapter 8 for more
information on stepping through a macro to debug it.

F1 Displays online help on the item selected in the Code window.

Shift+F2 Displays a definition of the selected function or subroutine in the
Code window.

2

033646-X Ch02.F 10/16/01 2:36 PM Page 23

Immediate Window Ctrl+G

(Name)(Name)

SELECT THE DISPLAYED
WINDOWS

⁄ Click View.

� The View menu lists the
available windows for the
selected window.

¤ Click the menu option for
the window to display within
the Visual Basic Editor.

� The selected window
displays in the last
viewed location.

� You can click and drag the
window to a new location.

� You can close a window
by clicking the Close
button ().

The Visual Basic Editor contains several different
windows that you use when developing macros.
Although Microsoft provides a basic window setup,

like most development environments, you can customize
this setup by rearranging, resizing, removing, and adding
windows. The most commonly used windows are the
Project Explorer, the Properties window, and the Code
window. You may also find the Immediate window useful
for quickly testing a statement before adding it to your
code. You can only access some windows, such as the
Toolbar and UserForm windows, from specific locations,
such as when you create a userform.

You can select which windows display and the locations
where they display. The View menu lists the available Visual
Basic Editor windows. For example, you can only view the
Toolbox from a UserForm window. When you select a

window from the menu, it displays in the location where
you last placed it. In other words, if you placed the Project
Explorer window in the upper-left corner during your last
session, that window reopens in that same location.

You can move windows using the standard drag-and-drop
features inherent to Microsoft Windows. You can also resize
the windows via the edges of the window.

You can also attach windows to specific locations of the
Visual Basic Editor by using the docking feature. When you
dock a window, it becomes part of another window
attached at the specified location. Keep in mind that
docking a window does not mean that the window always
displays in the Visual Basic Editor. If you set a window to
dock, Excel docks in the location you specified each time it
displays. You can only dock the windows on the top,
bottom, left edge or right edge of the Visual Basic Editor.

ARRANGE THE VISUAL BASIC
EDITOR WINDOWS

24

ARRANGE THE VISUAL BASIC EDITOR WINDOWS

EXCEL PROGRAMMING

033646-X Ch02.F 10/16/01 2:36 PM Page 24

DOCK INDIVIDUAL WINDOWS

⁄ Click Tools ➪ Options.

� The Options dialog box
displays.

¤ Click the Docking tab.

‹ Click the windows you
want to dock (changes
to).

› Click OK to close the
Options dialog box.

ˇ Dock the window by
clicking and dragging it to an
edge.

� Excel moves the window
to its new location. You
cannot place other windows
on top of a docked window.

Options

USING THE VISUAL BASIC EDITOR

25

The number of windows you can open within the
Visual Basic Editor depends on the resolution of
your monitor. The higher your monitor resolution,
the more viewing space you have available. When
writing code for your macro, you typically need to
have only the Properties window, the Project
Explorer window, and the corresponding code
module window open.

If you have a large high-resolution monitor, you
may want to consider sizing the Visual Basic Editor
and Excel windows so that you can see both
simultaneously. You can accomplish this by sizing
the Excel window to fit on the top half of the
screen and then sizing the Visual Basic Editor for
the bottom half. This set up works well for
stepping through the execution of the macro to
see the results, as described in Chapter 8,
“Debugging Macros.”

If you cannot fit both applications on your
monitor effectively, you can switch between the
two by using the Alt+F11 shortcut.

You can move windows around in the Visual Basic
Editor with the same techniques you use with all
Microsoft Windows programs. To move a window,
click the title bar and drag it to the desired
location. To resize a window, click a corner of the
window and drag it to the desired size.

2

033646-X Ch02.F 10/16/01 2:36 PM Page 25

VBAProject (PERSONAL.
VBAProject

(Name)

VBAProject Properties. . .

VBAProject (PERSONAL.

CHANGE A PROJECT NAME

⁄ Click Tools ➪ VBAProject
Properties.

� The Project Properties
dialog box displays.

¤ Click the General tab.

‹ Type the desired name for
the project.

› Click OK.

� The project name changes
within the Project Explorer
window.

You can set the properties, such as the project name
and the lock status of a project, for each project that
you view in the Visual Basic Editor. When you lock a

project, the project is password protected so that only
people who know the password can view and modify the
contents of the project. You set both the project name and
password information in the Project Properties dialog box.

Excel considers each open workbook a project when you
access the Visual Basic Editor. By default, the Visual Basic
Editor gives each project the name of VBA Project
(WorkbookName), but you can customize the name of the
project, if desired, within the Visual Basic Editor. Doing this
can help distinguish between different projects, especially if

you have several different workbooks open simultaneously.
For example, you can change the project name to match
the name of the corresponding workbook.

If you plan to distribute your workbook to other users, you
may want to consider password protecting your projects. If
a project is password protected, the user must specify the
password in order to view or modify any portion of the
project. This step can help protect macro code that you do
not want others to view or modify. Password protecting the
project does not affect the way the corresponding
workbook behaves within Excel, but it effectively keeps
others from viewing your macro source.

SET PROPERTIES FOR A PROJECT

EXCEL PROGRAMMING

26

SET PROPERTIES FOR A PROJECT

033646-X Ch02.F 10/16/01 2:36 PM Page 26

(Name) (Name)

LOCK PROJECT FROM EDITING

ˇ Click the Protection tab.

Á Click the Lock project for
viewing option (changes
to).

‡ Type the password
required to unlock the project.

° Type the password again.

· Click OK.

� Excel applies your settings

OPEN A LOCKED PROJECT

‚ Close the Visual Basic
Editor.

— Open the Visual Basic
Editor.

Note: See the section "Activate the
Visual Basic Editor" to open the VBE.

± Click the locked project.

� A Password dialog box
displays.

¡ Type the password.

™ Click OK.

� Excel opens the project.

USING THE VISUAL BASIC EDITOR

If you have multiple workbooks open in Excel,
you can copy modules and UserForms between
them by using the Project Explorer window. To
copy an object, click the desired object and drag
it to another workbook. When you release the
mouse button, the Visual Basic Editor creates a
copy of the selected module in the specified
project. By default, the Visual Basic Editor names
the copied module the same as the module in
the original project. When you copy an object to
another project, if one already exists with that
name, the Visual Basic Editor renames the object
by adding a 1 to the end of the name. For
example, if you copy Module2 to a different
project and that project contains a Module2
object, the copied object name becomes
Module21. If you have a Module 21, the Visual
Basic Editor names the copied object Module 22.

You can change the name of the copied module on
the Properties window. To do so, you type a new
name in the Name field and then press Enter. The
Name of the module changes on the corresponding
node in the Project Explorer window.

27

2

033646-X Ch02.F 10/16/01 2:36 PM Page 27

(Name) (Name)

Normal Text

⁄ Click Tools ➪ Options � The Options dialog box
displays.

¤ Click the Editor Format
tab.

‹ Click the type of text for
which you want to change
the settings.

› Click the and click the
desired font.

ˇ Click the and click the
font size.

Options. . .

You can modify the display settings for the text that
displays on the Code window in the Visual Basic
Editor. You can change the text color, font type, and

font size for the text that displays in the Code window. You
can not only specify the text color but also the background
color. Just like any basic editor, the Code window has
predefined formatting for the type of text that displays in
the window. For example, there is a definition for
comments and a different definition for normal text. You
may not, however, always find these settings the most
appealing. Fortunately, the Visual Basic Editor lets you
customize the text settings for the Code window.

For font styles, the Visual Basic Editor enables you to select
from the fonts installed on your machine. When dealing
with source code (VBA), you may find code easier to read if

you use a fixed-width font such as the Courier New font,
the default font. This type of font is preferable because the
characters in the code align vertically, making it easier to
detect any spacing problems with the code.

The Margin Indicator Bar check box indicates whether a
vertical indicator bar displays in the margin when you debug
your code. Make sure that this option remains selected,
because it helps to quickly spot the appropriate line of code
when debugging. The Visual Basic Editor places symbols in
the vertical indicator bar to indicate errors and break points.
See Chapter 8 for more information on debugging.

As you make changes to the font settings for each of the
formatting types, a sample of the font selections displays on
the Editor Format tab.

SET DISPLAY OPTIONS FOR
THE CODE WINDOW

28

SET DISPLAY OPTIONS FOR THE CODE WINDOW

EXCEL PROGRAMMING

033646-X Ch02.F 10/16/01 2:36 PM Page 28

(Name)

Auto

Normal Text

Á Click the and click the
color you want to use as the
font color.

‡ Click the and click a
background color option.

� The settings display in the
Sample box.

° Click OK to close the
Options dialog box.

� The text in the Code
window changes to reflect
your modifications.

� You can make
modifications to additional
font settings by repeating
steps 1 through 8.

USING THE VISUAL BASIC EDITOR

You can use the Editor tab, which contains six different
check boxes, to specify the settings for the Code window
and change the behavior of your code.

29

OPTION FUNCTION

Auto Syntax Check Allows the VBE to check the syntax of each line of code after you type it.

Require Variable Requires explicit variable declarations within all modules by adding the option
Declaration Explicit statement to the top of all new modules that you create. See Chapter 3 for

information on variable declaration.

Auto List Member Reminds you of the next logical value for completing the current statement. As you
type your code, a list displays based upon the current insertion point.

Auto Quick Info Displays information about functions and their parameters as you type.

Auto Data Tips For debugging code: The current value of the variable displays when you place your
cursor over the variable while in Break mode. See Chapter 8 for more information
about debugging your VBA code.

Auto Indent This option tabs to the first line of code. After you set a tab location, all following
lines start at the same tab location. You specify the width of the tabs in the Tab
Width field. You can make a tab between 1 and 32 spaces wide.

2

033646-X Ch02.F 10/16/01 2:36 PM Page 29

Module

(Name)

(Name)

Module 1

Module 2

⁄ Click the project where
you want to add a new
module.

¤ Click Insert ➪ Module.

� Excel creates a blank Code
window.

You can create new code modules directly within the
Visual Basic Editor. VBA uses modules to store variable
declarations and all procedures, including functions

and subroutines. Whenever you create a new macro using
the Macro Recorder, Excel generates a new module within
the corresponding project to house the new macro. Excel
places the macro code in a subroutine with the same name
as the macro. See Chapter 3 for more information on
procedures, including functions and subroutines.

You do not need to rely on Excel to create the new modules
for your macros because you can create them directly
within the Visual Basic Editor. After creating a module, you
can create a subroutine within the module and add the
desired code so that the Macro dialog box lists your macro
within Excel. Of course, in order for Excel to make the
macro visible, you must create a public subroutine. See
Chapter 3 for more information about working with
subroutines.

As you add new modules to a project, Excel gives them the
name Module#. The Visual Basic Editor assigns the number
to the macro, sequentially increasing the number by one
each time you add a macro. For example, the Visual Basic
Editor names the first module in the project Module1, the
second Module2, and so on.

The Project Explorer lists all of the modules within a specific
project. When you add a new module, Excel selects that
module on the Project Explorer and creates a blank Code
window.

You do not have to create a new module for each
procedure that you add to a workbook. You can add
multiple procedures to the same module, if desired.

ADD A NEW MODULE

30

ADD A NEW MODULE

EXCEL PROGRAMMING

033646-X Ch02.F 10/16/01 2:36 PM Page 30

(Name)

Display Message

‹ Type Sub NewSubroutine
replacing NewSubroutine
with the name of the new
subroutine.

Note: See Chapter 3 for information
on creating subroutines.

› Type the code for
your macro.

ˇ Type End Sub.

Á Click the View Microsoft
Excel button () to switch to
Excel.

‡ Display the Macro
dialog box.

� The Macro dialog box
displays when you click Tools
➪ Macro ➪ Macros.

� The Macro dialog box lists
all existing macros including
the one created within the
Visual Basic Editor.

USING THE VISUAL BASIC EDITOR

You can easily change the name of a module
within the Visual Basic Editor. When you create a
new module, the Visual Basic Editor automatically
names the module Module# with the number
sequentially following the last module you
created. For example: Module1, Module2, etc.. If
you have a project with several different modules,
it becomes difficult to distinguish one module
from another without reviewing the source code.
You can name modules so they are easier to
distinguish. You do so by assigning the name of
the main subroutine of function in the module as
the module name. This allows you to quickly
determine which module contains the desired
macro. The name of the macro changes on the
Properties window. To change the name, simply
change the value in the Name field on the
Properties window for the module that you have
selected in the Project Explorer. As soon as you
press Enter, the name of the module changes on
the corresponding node on the Project Explorer
window.

31

2

033646-X Ch02.F 10/16/01 2:36 PM Page 31

Module2

(Name) (Name)

Remove Module2 . . .

⁄ In the Project Explorer,
click to highlight the module
that you want to remove.

� If the Project Explorer is
not displayed, you can
summon it by clicking
View ➪ Project Explorer.

¤ Click File ➪ Remove
ModuleName where Module
Name is the name of the
selected module.

� The Remove command
always contains the name of
the selected module.

� The Visual Basic Editor
displays a message to verify
the delete selection.

‹ Click Yes to save the
module to a file.

� If you click No, the Visual
Basic Editor removes the
module permanently.

You can remove modules from the Visual Basic Editor
rather quickly. As you work within the Visual Basic
Editor, you may find that you have modules that you

want to remove from a selected project. Typically, you
delete modules that contain subroutines and functions that
you no longer need for your project.

When you remove a module that contains code for a macro
used within Excel, remember that you can no longer access
the macro. Also, if you remove a module that contains code
referenced by a procedure in another module, including an
Excel macro, an error message displays when you run the
code in the other module. To avoid error messages, you
may want to consider saving the module to another file
before you delete it.

When you remove a module, the Visual Basic Editor
provides the opportunity to export the module to a file so

you can reload it again, either in the same project or a
different project. If you do not export the module to a file
before deleting it, you cannot restore it later. Even if you
do not intend to use the module again, to make sure that
you do not cause problems with other procedures or
subroutines in the project, again, you should save the
module to a file before deleting it. After you ensure that
everything works, you can delete the exported file. When
you export the module to a file, the Visual Basic Editor saves
this module in a .bas file that you can import back into a
project again at any time.

When you delete macros within Excel, Excel removes the
corresponding VBA subroutine code. If the only code
contained in the VBA module is the Excel macro, Excel
removes the entire module.

REMOVE A MODULE

32

REMOVE A MODULE

EXCEL PROGRAMMING

033646-X Ch02.F 10/16/01 2:36 PM Page 32

(Name) (Name)

› Select the folder in which
you want to save the
module code.

ˇ Type a name for the
module code in the File
name field.

Á Click Save.

� The Visual Basic Editor
removes the module from the
project.

USING THE VISUAL BASIC EDITOR

When you export a copy of a module to a file,
you can import it into any workbook. You can
insert exported modules that Excel creates
during the delete process into a project at any
time by clicking File ➪ Import File. You do not
have to import the module back into the original
project; you can insert it into any project. On
the Import File dialog box, you highlight the
appropriate module file to import and click
Open. All VBA module files have the extension
.bas. When you import a module file, the Visual
Basic Editor tries to assign it the same name as
the original module. If a module already exists
with that name, the Visual Basic Editor adds 1 to
the end of the module name. Therefore, if you
named the original module Module1 and a
Module1 exists in the project, Excel names the
imported module Module11.

You do not need to delete a module to save it as a
file. If you want to share your code with other Excel
macro developers, you can simply export the
module to a file that you can distribute. To export
a macro you again select the module containing
the macro and then click File ➪ Import File.

33

2

033646-X Ch02.F 10/16/01 2:36 PM Page 33

(Name)

RENAME A MACRO VIA THE
MACRO DIALOG BOX

⁄ In the Macro dialog box,
click the macro you want to
rename.

Note: See Chapter 1 for information
on opening the Macro dialog box.

¤ Click Edit.

� The Visual Basic Editor
displays the source code for
the selected macro.

‹ After the Sub keyword,
type the new macro name.

Note: See Chapter 3 for more
information about subroutines.

› Close the Visual Basic
Editor.

� The name of the macro
changes in the Macro dialog
box.

Calculate Total

You can very easily rename a macro that you created
either with the Macro Recorder or in the Visual Basic
Editor. Doing so, however, does require accessing the

actual macro code within the Visual Basic Editor.

When you create a macro in Excel using the Macro
Recorder, Excel automatically writes the code for the macro
in Visual Basic for Applications (VBA). When you create a
macro using the Macro Recorder, the only way that you can
make changes to the macro code, or the macro name, is by
modifying the VBA code for the macro using the Visual
Basic Editor.

To rename the desired macro, you need to open the Visual
Basic Editor and change the name of the subroutine that

Excel uses to run the macro. From Excel you can accomplish
this for nonhidden workbooks via Edit on the Macro dialog
box to display the corresponding subroutine.

You can also rename a macro in the Personal Macro
Workbook within the Visual Basic Editor. Because Excel
opens the Personal Macro Workbook as a hidden file, the
steps to rename the macro are slightly different from a
regular macro. Essentially, the difference centers on how
you access the macro code. Excel does not allow you to edit
a macro in the Personal Macro Workbook from the Macro
dialog box. To modify a macro in the Personal Macro
Workbook you must access the Visual Basic Editor directly
and then make modifications to the corresponding module
in the Personal.xls project.

RENAME A MACRO

34

RENAME A MACRO

EXCEL PROGRAMMING

033646-X Ch02.F 10/16/01 2:36 PM Page 34

Macro

Visual Basic Editor Alt+F11

(Name)

RENAME A MACRO IN THE
PERSONAL MACRO WORKBOOK

⁄ Click Tools ➪ Macro ➪
Visual Basic Editor.

� The Visual Basic Editor
displays the source code for
the current workbook.

¤ Click the PERSONAL.XLS
project.

‹ Click the module
containing the macro you
want to modify.

› After the Sub keyword,
type the new macro name.

ˇ Close the Visual Basic
Editor.

� The name of the macro
changes in the Macro dialog
box.

USING THE VISUAL BASIC EDITOR

When you change the name of a macro, Excel
updates the Macro dialog box, but it does not
update toolbar buttons and menu options that
refer to the macro. Because you changed the name
of the macro, you need to change the macro
reference for each item to continue using the same
button or menu option to reference the macro. To
change the macro reference for these items, click
Tools➪Customize to display the Customize dialog,
and then right-click the menu option or toolbar
button to display a menu of options. Click the
Assign Macro option to display the Assign Macro
dialog box. On this dialog box, click to highlight
the name of the macro that you want to use for
the corresponding toolbar button or menu option,
and then click OK.

Because the name of the macro changes, you may
also want to change the name of the toolbar button
or menu option to correspond to the macro name.
To do this, you need to change the value of the
Name field on the Customize menu. You can also
change the hot key reference for the macro by
typing & in front of the hot key for the macro.

35

2

033646-X Ch02.F 10/16/01 2:36 PM Page 35

Macro

Record New Macro . . .

⁄ Click Tools ➪ Macro ➪
Record New Macro.

� The Record Macro dialog
box displays.

¤ Type Workbook_Open in
the Macro Name field.

‹ Click the and then
click This Workbook location
in the Store macro in field.

› Click OK to record the
macro.

You can easily create macros that execute whenever
you open a specific workbook in Excel. If you want the
macro to execute every time you run Excel, you can

place the macro in the Personal Macro Workbook. Of
course, this type of macro executes only once, which makes
it best suited for steps that you perform each time you run
Excel.

A startup macro works great for setting the basic layout of
your Excel window, such as the toolbars that you want to
display and the desired locations. When it comes to the
window layout, Excel always opens with the settings you
used the last time you ran it. Therefore, any toolbars that
you closed during the last session are closed when you
open Excel again.

By creating a macro that sets the toolbars that you want to
view, Excel opens these same toolbars and places them in
the same location each time you run Excel.

The simplest method for creating this type of macro is to
place the macro in the Personal Macro Workbook. Because
Excel loads the Personal Macro Workbook each time you
run it, the macro you create executes when Excel opens
because that is when the workbook opens. You need to
make the macro a part of the Personal Macro Workbook as
well as a part of the ThisWorkbook object.

You must name the macro that you create Workbook_Open.
If you have a macro with this name, Excel knows that
whenever the object — the corresponding workbook —
opens, the macro needs to run. See Chapter 4 for more
information about Excel objects.

CREATE A STARTUP MACRO

36

CREATE A STARTUP MACRO

EXCEL PROGRAMMING

033646-X Ch02.F 10/16/01 2:36 PM Page 36

(Name) (Name)

ˇ Open the Visual Basic
Editor.

Note: See the section "Activate the
Visual Basic Editor" to open the
editor.

Á Click the current project.

‡ Double-click the last
module in the list.

° Highlight the entire
macro code from Sub
Workbook_Open() to the
End Sub command.

· Click the Copy button ().

‚ Double-click the
ThisWorkbook object on the
tree in the Project Explorer
under PERSONAL.XLS.

— Place the cursor in the
Code window for the selected
object, under any existing
macros.

± Click the Paste button ().

¡ Close the Visual Basic
Editor.

� When you open Excel
again, the Workbook_Open
macro runs and executes the
specified code.

USING THE VISUAL BASIC EDITOR

Instead of copying the macro code to the
ThisWorkbook object , you can create a macro in
the ThisWorkbook object code module that calls
the macro code in the appropriate code module.
For example, if you have a subroutine in a
module called SetToolbars that you recorded
with the Macro Recorder, you can create another
subroutine called Workbook_Open() in the
ThisWorkbook object that calls the recorded
macro, as shown in the following sample code.

Example:
Sub Workbook_Open()

Call SetToolbars

End Sub

From the Workbook_Open() subroutine, you
can call any other procedure within the same
workbook project. To call another procedure, you
need to use the Call statement before the name
of the procedure you want to call. When Excel
executes the main procedure, if it encounters a
Call statement it executes that procedure and
returns to the main procedure.

When you create a Workbook_Open macro, you
actually create a subroutine that captures the Open
event for the corresponding Workbook object.
Events occur in Excel whenever anything occurs,
whether initiated by you or the application. You can
capture many different events to trigger specific
code. See Chapter 15 for more detailed information
on working with Excel events.

37

2

033646-X Ch02.F 10/16/01 2:36 PM Page 37

Macro Macros . . . Alt+F8

ThisWorkbook.Workbook Open

⁄ Click Tools ➪ Macro
➪ Macros.

� The Macro dialog box
displays a list of available
macros.

¤ Click the macro that you
want to hide.

‹ Click Edit.

You can hide macros so that they do not appear on the
Macro dialog box in Excel. If you create workbooks
that you intend to share with other users, you may

find that you want to hide specific macros within your
workbook. This can help to ensure that an unknowing user
does not inadvertently delete the macro from your
workbook.

Because Excel cannot execute a hidden macro from the
Macro dialog box, the only method of execution for a
hidden macro involves assigning a toolbar button or menu
option. When you hide a macro, shortcut keys no longer
execute the macro. If you do not assign the macro to a
toolbar button or menu option, Excel cannot execute the
macro.

If you want to hide a macro, you need to open the module
containing the corresponding macro within the Visual Basic

Editor and place the Private statement in front of the Sub
statement for the subroutine. For example, you type the
following to hide a ChangeText subroutine: Private Sub
ChangeText().

Keep in mind that hiding a macro does not prevent users
from viewing or modifying it in the Visual Basic Editor. If
you want to keep another user from accessing the macro,
you need to lock the project containing the macro by
changing the properties of the project. See the section “Set
Properties for a Project” for more details on specifying the
project properties. Locking the project prevents a user from
viewing and modifying all the VBA code within that project
in the Visual Basics Editor. To open the project, the user
must specify the correct password. Although locking a
project prevents user accessiblity, Excel can still execute any
macros within the project.

HIDE A MACRO

38

HIDE A MACRO

EXCEL PROGRAMMING

033646-X Ch02.F 10/16/01 2:36 PM Page 38

� The Visual Basic Editor
opens and displays the
module containing the macro
you selected.

› Type Private before the
Sub statement.

ˇ Close the Visual Basic
Editor.

Á Open the Macro dialog
box.

� The macro no longer
displays on the Macro dialog
box.

(Name)

Calculate_Total

Calculate_Total

USING THE VISUAL BASIC EDITOR

You should hide macros that are called by other
macros if you do not want the macros to execute
alone from the Macro dialog box. For example, if
you have a macro named ChangeCells that calls
another macro named AddCellValues, you can
hide the AddCellValues macro so that a user
cannot select that macro from the Macro dialog
box. When you mark a procedure as private by
placing the Private statement in front of the
Sub statement for the subroutine, you can only
access the subroutine within the same code
module. In other words, you must place the
subroutine that corresponds to the macro calling
the hidden macro within the same code module
as the hidden macro. See the sections “Create a
Subroutine” and “Create a Function” for more
information on using the Private statement.

To make a hidden macro visible again, you need to
access the module containing the corresponding
subroutine within the Visual Basic Editor and delete
the Private statement in front of the Sub
statement. Because you cannot access a hidden
macro from the Macro dialog box, the only way to
access the Visual Basic Editor is to click Tools ➪
Macro ➪ Visual Basic Editor.

39

2

033646-X Ch02.F 10/16/01 2:36 PM Page 39

(Name)

Digital Signature . . .

Choose

⁄ Click the module that
contains the macro you want
to sign.

� The macro code displays
in the Code window.

¤ Click Tools ➪ Digital
Signature.

� The Digital Signature
dialog box indicates whether
you have a digital signature
certificate currently assigned
to the selected macro.

‹ Click Choose.

You can assign a digital signature to any of your macros.
You attach signatures to code in a macro, or file, to
signify that the code is valid and that no one has

modified it since you applied the signature.

You can create two types of digital signatures: certified
digital signatures and personal digital signatures. You
acquire certified digital signatures from commercial
agencies, such as VeriSign, Inc. The signatures of choice
when you distribute your code to other users, commercial
agencies require you to pay a fee to obtain them. You can
also create your own personal digital signature, but Excel
does not consider this type of signature certified. Personal
digital signatures work well for indicating that no one has
altered the macro since you assigned the signature, but they
do not certify it like the ones you acquire from a
commercial agency. For more on creating a personal digital
signature, see Chapter 1.

No matter how you acquire a digital signature, it does not
do you any good until you attach it to a macro. Attaching a
digital signature is similar to sealing an envelope: If it arrives
sealed, no one has tampered with the contents. Keep in
mind that the digital signature stays attached to the macro
only until someone modifies it. Excel even removes the
digital signature if you modify the VBA code. Therefore, if
you make any modifications at all to the macro code, you
need to re-attach the digital signature.

If you are not sure whether you have modified a macro
since attaching the digital signature, you can check to see if
the signature is attached in the Digital Signature dialog box.
If a digital signature is attached, the name of the signature
displays in the Certificate Name field.

ASSIGN A DIGITAL SIGNATURE TO A MACRO

40

ASSIGN A DIGITAL SIGNATURE TO A MACRO

EXCEL PROGRAMMING

033646-X Ch02.F 10/16/01 2:36 PM Page 40

(Name)

� The Select Certificate
dialog box displays a list of
available digital signature
certificates.

› Click the desired
certificate.

ˇ Click OK.

Á Click OK in the Digital
Signature dialog box to save
the settings.

‡ Close the workbook in
Excel.

° Reopen the workbook
containing the macro.

� Depending upon the type
of certificate loaded, you
see a message indicating
that Excel is loading a
signed macro.

USING THE VISUAL BASIC EDITOR

When a worksheet containing a signed macro loads, you
can specify that you want to always trust macros from
that source by clicking the Always trust macros from this
source option (changes to). If you select this
option, Excel saves the name of the trusted source in the
Trusted Sources tab of the Security dialog box. You can
view the list of your current trusted sources by clicking
Tools➪Macro➪Security to display the Security dialog
box and then select the Trusted Sources tab.

If at any time you no longer want to trust macros from
a source listed on the Trusted Sources tab, you simply
highlight the name of the source and click Remove. If
you remove the source from the list, the next time you
open a workbook with that source Excel prompts you
to see if you want to open macros from that source.

Also on the Trusted Source tab you have two other
options. To have Excel also warn you before opening
installed add-ins and templates, remove the check mark
for the Trust all installed add-ins and templates check
box. To allow Excel to access all macros with your
project without warning you, select Trust access to
Visual Basic Project.

41

2

033646-X Ch02.F 10/16/01 2:36 PM Page 41

Format Currency

(Name)

⁄ On the Macro dialog box,
click to the macro that
contains the source you want
to add to the original macro.

� To open the Macro dialog
box click Tools ➪ Macro ➪
Macros.

¤ Click Edit.

� The Visual Basic Editor
displays the code for the
selected macro.

‹ Press the Shift key and
click the start of the source
you want to copy.

› Continue pressing the Shift
key and click the end of the
source to copy.

� Excel highlights the code
between the Sub and
End Sub statements.

ˇ Click the Copy button ().

You can update macro code at any time by adding or
removing VBA code. Of course, after you record a
macro, you can record over the top of it to replace it,

but you cannot modify it directly within Excel. The only
method you can use to actually modify the macro code is to
change the corresponding subroutine within the Visual
Basic Editor. If you do not know how to read and write VBA
code required for the step you want to add to the macro,
this can become quite an undertaking.

Typically, modifying a macro, even one you create with the
Macro Recorder, requires manually specifying the new VBA
code you want to add to the macro. A quick and dirty
method for updating a macro involves recording another
macro containing the steps you want to add to the first one,
and then using Copy and Paste buttons within the Visual
Basic Editor to add the new steps to the old macro.

For example, if you create a macro to sum a column of
values but forget to change the formatting of the column to
Currency, you can record a second macro in Excel that
formats the column and then add that source to the first
macro. After you do this, you open the Visual Basic Editor
and copy the formatting code of the second macro and
paste it into the subroutine for the first macro. Keep in
mind, however, that when you copy the code, you only
want to copy the portion of the subroutine between the
Sub and the End Sub statements.

When you copy the code from the new macro into the old
macro, you should delete the new macro. You can find out
more about deleting macros in Chapter 1.

UPDATE A RECORDED MACRO

42

UPDATE A RECORDED MACRO

EXCEL PROGRAMMING

033646-X Ch02.F 10/16/01 2:36 PM Page 42

(Name)

Format Currency

Á In the Project Explorer
click the module that
contains the code for the
macro you want to update.

‡ Place the cursor between
the last line of code and the
End Sub command.

� You may need to insert a
blank line.

° Click the Paste button ().

· Close the Visual Basic
Editor.

‚ In the Macro dialog box,
click the second-to-last macro.

— Click Delete to remove
the macro.

± Close the Macro dialog
box.

� When you run the macro,
Excel executes the original
and copied code.

USING THE VISUAL BASIC EDITOR

When you view the VBA code for your
macro, you may notice that a single
quote (‘) precedes several lines. Called
comment lines, programmers use these
lines to provide information about the
code such as what the code does,
when it was created, or even who
coded it. When you use the Macro
Recorder to create a macro, by default
Excel adds several comment lines.
These comment lines always indicate
the name of the macro, the creation
date, and the programmer. If the
programmer creates a keyboard
shortcut for the macro, the comments
contain this information as well.
Making modifications to the comment
lines does not affect the macro
execution. In fact, Excel ignores any
line of text or code preceded by a
single quote when the macro executes.

43

Example:
Private Sub add()

‘

‘ add Macro

‘ Macro recorded 5/19/2001 by
Jinjer Simon

‘

‘ Keyboard Shortcut: Ctrl+d

‘

ActiveCell.FormulaR1C1 =
“=SUM(RC[-6]:RC[-1])”

End Sub

2

033646-X Ch02.F 10/16/01 2:36 PM Page 43

You use the Visual Basic for Applications (VBA)
programming language to create all macros within
Excel. Although most people use VBA for macro

development, VBA is actually much more powerful than just
a macro language.

AN INTRODUCTION TO VBA
EXCEL PROGRAMMING

UNDERSTAND THE VB/VBA RELATIONSHIP

A member of the Visual Basic (VB) family, VBA sits
between Visual Basic and VBScript as far as overall
functionality. Amazingly enough, VBA actually provides
a large portion of the language elements that VB uses,
including forms, controls, objects, modules, and data-
access technologies. The code for the three languages
resemble each other so much that you may find it
difficult to differentiate between VB, VBA, and VBScript
when looking at a line of code.
One of the big differences between VB and VBA
programs is the fact that VBA code runs within the host
environment, which means that VBA code for Excel
runs within Excel. Also, VBA code is interpreted as it
runs, which means that each line converts to machine
code prior to execution. VB code, on the other hand,
compiles into an executable file that runs independent
of any other applications. Therefore, programmers

consider VBA an interpreted language because as it
runs, the environment in which it runs interprets the
code to determine what to do next.
Microsoft Office XP provides VBA in all its applications.
Many non-Microsoft applications also use VBA, as the
platform for developing code that interfaces with the
object model for the specific application. By interfacing
with the application object model, VBA can manipulate
different objects directly, such as changing the value in
a cell within Excel. You interface with the particular
application object mode by writing macros, but you
can also use VBA to develop applications that interface
with the corresponding Microsoft application. Each
Microsoft Office XP application has its own object
model for interfacing with the program functionality.
See Chapter 4 for more on the Excel object model.

COMPARING VBA TO OTHER MACRO LANGUAGES

To call VBA a macro language, severely limits your
understanding of its overall capability. VBA actually has
many features lacking in other macro languages.
Historically strong in their ability to capture a series of
keystrokes to repeat simple tasks, many macro
languages types of macros lack the capability of
creating conditional statements or conditionally
repeating a series of steps.

Because VBA replaced XLM, the original macro language
of Excel, developers commonly refer to it as a macro
language. Although the book uses VBA only to work
with Excel macro concepts, you should know that you
have the option of using it for application development.
Such application development, however, is limited to the
Microsoft Office program environment, in which VBA
runs.

UNDERSTANDING VBA TERMINOLOGY

The remaining chapters in this book deal with the
basics of the VBA language in respect to Excel macros
and how you can use VBA to add complex functionality

to a macro. To perform the tasks, you need to grasp the
common VBA terminology that this book utilizes.

44

User-Defined

You create user-defined data types as a combination of
standard VBA data types.

You can review Chapter 5 to learn about the process of
creating a User-Defined data type for your macros.

Example:

Type BookReview

Title as String

Pages as Byte

ReviewDate as Date

End Type

043646-X Ch03.F 10/16/01 2:36 PM Page 44

VBA PROGRAMMING BASICS 3

45

UNDERSTANDING VBA TERMINOLOGY (CONTINUED)

Data Types

A Data Type refers to how VBA stores data in memory.
VBA provides an assortment of built-in data types that
you can use to handle your macro data, along with
user-defined data types that you create.

In VBA, you do not specify the type of data you store in
a variable when you declare it. You can enable VBA to
automatically determine the data type, but this can
slow down your code for large macros.

The size of a data type refers to the number of bytes it
takes to store it. A byte is a group of bits, with a bit
being the smallest storage unit and having a binary
value or either 1 or 0. Realizing the number of bytes
you require to store a data type can help you use
memory more efficiently. Keep storage issues in mind
when you create complex macros.

The following table lists the various data types for VBA
integers.

DATA TYPE BYTES RANGE OF VALUES

Byte 1 0 to 255

Integer 2 -32,768 to 32,767

Long 4 -2,147,483,648 to 2,147,483,647

Numeric

VBA provides several different numeric data types,
depending upon the type of numeric value you want to
save.

VBA provides three different integer data types. Integers
are numeric values that do not include a decimal portion
of the value. VBA uses three different types of floating-
point data. The one you select depends upon the size of
the numeric values you want to store in the variable. The
following table lists VBA floating-point values:

DATA TYPE BYTES RANGE OF VALUES

Single 4 -3.402823E38 to -1.401298E-45
for negative values

1.401298E-45 to 3.40283E38
for positive values

Double 8 -1.79769313486232E308 to -
4.94065645841247E-324
for negative values

4.94065645841247E-324 to
1.79769313486232E308 for
positive values

Currency 8-922,337,203,685,477.5808 to
922,337,203,685,477.5807

Object

You use the Object data type to define a variable as
one of the objects that are part of the Excel Object
Model. These data types are 4 bytes in size.

Excel provides an abundance of objects, including the
Workbook, Window, Chart, and PivotTable. You can
assign each of the objects that the Excel Object Model
provides as a data type.
For example:
Dim chrt as Chart

Dim sheet1 as Worksheet

For more information on objects, see Chapter 4.

Boolean

You use a Boolean data type to store a value of True or
False. A Boolean data type takes two bytes of data
storage. Programmers use Boolean data when working
with logical data. VBA predefines the keywords True
and False as Boolean values. To assign them to a
variable, you simply specify the value BoolValue =
True.

You should not use quotes when assigning a Boolean
value. When you place quotes around the word True,
VBA treats the variable as a string instead of a Boolean
value.

Date

The Date data type provides the ability to store dates
and times so that you can use them in calculations.
VBA accepts a date range from January 1, 100 to
December 31, 9999. Unfortunately, the date range
within Excel is much smaller — January 1, 1900 to
December 31, 9999. If you place a date value in an
Excel worksheet that is outside this date, Excel
produces an error message.

The Date data type is an 8-byte values that stores as a
decimal numbers. Because Dates are numeric,
calculations can use them.

When you specify dates and times in VBA, you enclose
them in pound signs instead of the quotation marks
used by strings.
Const StartDate As Date = #6/12/2001#

043646-X Ch03.F 10/16/01 2:36 PM Page 45

AN INTRODUCTION TO VBA

EXCEL PROGRAMMING

46

UNDERSTANDING VBA TERMINOLOGY (CONTINUED)

Variant

Variant data type is the default data type used by VBA.
Because a variant can contain any type of data, VBA
treats all variables you do not assign a data type as
variants. But because of the processing required by

VBA to determine the data type, variants work best
when you use them for values that you cannot type
with the standard VBA data types. The following table
lists VBA variant data types:

String

You can use a string data type to store a sequence of
characters. A string can contain any combination of
letters, numbers, punctuation marks, and spaces. In
order for VBA to recognize the start and stop of your
string you must enclose it in quotes, for example:
SampleString = "This is a sample"

You can declare strings in one of two different types:
variable length and fixed length. As the names state,
you declare fixed-length strings with a maximum
number of characters, and variable-length strings with
as many as 2 billion characters.

To declare a fixed-length string, you need to specify
the string length as part of the definition. When you
declare a string length, the string is always that size,
even if you assign a smaller string to it. For example,
you declare a string of 25 characters as follows:
Dim FixedString As String * 25

Variable-length strings have no length specified:
Dim VarString As String

VARIABLES

Variables are essentially user-defined storage spaces.
You can declare a variable to contain a specific type of
data value.

This chapter describes the process of declaring a
variable to use within a macro. Chapter 5 provides
additional information about dealing with variables.

You can make variable names almost anything
including any combination of alphabetic characters,
numbers, and some punctuation characters — such as

#, $, %, ., and ! — as long as the first character is
alphabetic. You cannot use spaces as part of the name.

VBA is not case sensitve. You can make the names
upper- or lowercase characters, or any combination.

You should make variable names descriptive so you
can easily determine what the variable contains. For
example, Cell_Total indicates that the variable
contains the total of adding cells. Keep in mind that the
name cannot exceed 254 characters.

DATA TYPE BYTES RANGE OF VALUES

Decimal 14 +/-79,228,162,514,264,337,593,543,950,335 with no decimal point or +/-
7.9228162514264337593543950335 with 28 places to the right of the decimal

Variant 16 -1.79769313486232E308 to -4.94065645841247E-324 (with numbers) for
negative values, 4.94065645841247E-324 to 1.79769313486232E308 for
positive values

Variant 22 + string length 0 to 2,000,000,000 (with characters)

043646-X Ch03.F 10/16/01 2:36 PM Page 46

VBA PROGRAMMING BASICS 3

47

CONSTANTS

Constants, as the name implies, represent specific
values that do not change within your code. You
declare constants using the Const statement.
Const MyName As String = “Jinjer”

As with variables, if you do not specify the data type
for the constant, Excel treats the constant as a variant.

Using constants enables you to have only one place in
the code to modify if the value of the constant

changes. For example, suppose that you have the
following constant declaration:
Const SalesTax As String = “.075”

If your state raises the sales tax, you simply have to
modify the constant value — .075 in the example—
and not each calculation. Using constants helps to
eliminate potentials errors that can arise from
mistyping a value.

ARRAYS

An array is a group of variables with the same name
and data type. For example, if you have a list of the 50
U.S. states, you can place the state names in an array
called States. You refer to each value in an array as an
element. You access elements of the array using an
index number that corresponds to their position in the
array.

Using an array reduces the number of variables
required in your code because you only have to
declare one variable to manage all of your data values.
Otherwise, storing our 50 states could require
declaring and managing 50 different variables.
Dim States(50)

States(43) = “Texas”

You refer to an array with one list of data as a one-
dimensional array. VBA provides the ability to declare
multidimensional arrays. With a multidimensional array,

each array element has a corresponding array. For
example, with the aforemention States array, you can
have a corresponding list of cities in each state. If a
user selects Texas, a list of the cities in Texas becomes
available.
States(43,5) = “Dallas”

VBA allows for up to 60 dimensions in an array, but
most developers rarely use more than 2 or 3
dimensions.

You can declare arrays either as fixed-length, where
you specify the number of elements, or as dynamic
with an unknown number of elements.
Dim States()

Chapter 5 provides several examples for working with
arrays in your VBA code.

PROCEDURES

A procedure is simply a block of code that performs
specific actions. Typically, when using VBA with Excel
macros, you perform the actions with or on Excel
objects.

VBA provides essentially two types of VBA procedures:
Functions and Subroutines. The only real difference
between the two types of procedures is that a function
returns a value.

If, up to this point, you have created all of your VBA
code with the Macro Recorder, you have probably seen
only subrountines. Because you cannot call functions

from Excel as macros, the only way a macro uses a
function is when it is called by a subroutine.

To use functions with your macros, a subroutine must
call the functions. See “Create a Subroutine” for more
information on working with subroutines.

You can make procedure names almost anything, as
long as they do not resemble a worksheet cell
references. For example, VBA cannot accept a
subroutine named A3 because it resembles a cell
reference. You can create procedure names using the
same rules as those discussed in the Variables section.

043646-X Ch03.F 10/16/01 2:36 PM Page 47

AN INTRODUCTION TO VBA

EXCEL PROGRAMMING

48

OPERATORS

VBA provides several different operators that you can
use in your code. You can group these operators into
four general categories: arithmetic, concatenation,

comparison, and logical. You should find most of these
operators quite familiar.

Arithmetic Operators

VBA accepts seven different arithmetic operators.
When a statement contains multiple arithmetic
operators, VBA uses precedence order to determine
how to evaluate the statement. For example, VBA
always calculates exponents first. The only exeception
to the precedence order are parentheses. When
parentheses separate portions of a statement, VBA

evaluates the contents of the parentheses first, still
using the precedence order. In the following statement,
Val2 is added to Val3, and the sum is multiplied by Val1.
Value = Va1 * (Val2 + Val3)

The following table lists arithmetic Operator
Precedence Order:

OPERATOR PRECEDENCE PURPOSE

^ 1 Raises the number before the operator to the power of the exponent.
For example, 2^3 = 8

- 2 Denotes a negative value.

* 3 Multiplies to numerical values.

/ 3 Divides two numerical values and returns the entire result, including
any decimal places. For example, 5 / 2 = 2.5.

\ 3 Divides two numerical values and returns the integer portion of the
result. For example, 5 \ 2 = 2.

Mod 4 Divide two numerical values and returns the remainder. For example,
5 MOD 2 = 1.

+ 5 Adds two numerical expressions.

- 5 Finds the difference between two numerical expressions by subtracting
the second expression from the first.

Concatenation Operator

You can use the concatenation operator & to join
together two or more strings. For example, ap & ple
creates a new string apple. VBA also enables you to

use the + operator for concatenating strings, but for
consistency you should always use & operator with
strings.

043646-X Ch03.F 10/16/01 2:36 PM Page 48

VBA PROGRAMMING BASICS 3

49

OPERATORS (CONTINUED)

Comparison Operators

You use comparison operators between two
expressions to determine if the expressions are equal,
greater than, or less than each other.

VBA uses these operators to compare numerical or
string values. If comparison operators compare a
numerical and string value, Excel always evaluates the
numeric expression as less than the string expression.

If you compare two string expressions, Excel looks at
the characters in the string and not the string length to
determine which string is longer. For example, if you
compare abcd with cd, Excel considers cd to be
greater because the letter c comes after a. This is true
even though it has fewer characters.

The following table lists comparison operators:

OPERATOR PURPOSE

= Determines if expressions are equal.

> Determines if first expression is greater
than second expression.

< Determines if first expression is less
than the second expression.

<> Determines if expressions are not equal.

>= Determines if first expression is greater
than or equal to second expression.

<= Determines if first expression is less
than or equal to second expression.

Logical Operators

Logical operators evaluate expressions and return a
logical value of True or False. For example, you can
use a logical operator to compare two comparison
expressions.
If val1 > 10 And val2 = 5 Then

With this expression, the If statement can execute
only if both expressions are true.

VBA supports six different logical expressions.

The following table lists Logical Operators:

OPERATOR PURPOSE

Not Negates the value of the expression. If the expression is True the operator causes it to be
false, or vice versa.

And Performs a logical conjunction of two expressions. If they are both True, the result is True.
If either of the expressions is False the result is False. If either expression is Null the
result is Null.

Or Performs a logical disjunction of two expressions. If the value of either expression is True,
the result is True; otherwise, the result is False. Just like the And operator, if either
expression is Null, the result is also Null.

Xor Performs a logical exclusions (exclusive or) on two expressions. The result is the converse of
the Eqv operator. If both expressions are True or if both are False the result is False. If
one expression is True and the other is False the result is True.

Eqv Performs a logical equivalence on two expressions. If both expressions are True or if both
are False, the result is True; otherwise the result is False.

Imp Performs a logical implication on two expressions. If both expressions are True or if both are
False, the result is True. If the first is True and the second is False, the result is False,
but if the first is False and the second is True the result is True.

043646-X Ch03.F 10/16/01 2:36 PM Page 49

⁄ In the Project window,
click the project where you
want to add a new module.

¤ Click Insert ➪ Module. � Excel creates a blank Code
window.

‹ Type Sub.

› Type the name of your
subroutine.

Note: See the section “An
Introduction to VBA” for information
about naming subroutines.

ˇ Type () after the name of
the subroutine.

Á Press Enter.

Modules

(Name)

You can easily create a subroutine within the Visual
Basic Editor that executes a series of VBA commands.
Each macro that runs in Excel is actually just a

subroutine that contains blocks of VBA code. That said, a
single subroutine can call other subroutines and functions,
creating a macro that is much more complex than just a
simple subroutine.

VBA provides essentially two different types of subroutines:
private and public. When you create a macro with the
Macro Recorder, the subroutine it creates is public, meaning
that all procedures, including the Macro dialog box, can
access and see it. Conversely, only other procedures within
the same module can access a private subroutine. Excel
hides all Private subroutines from the Macro dialog box and
you cannot activate them with key combinations. You
should mark subroutines as private if you do not want them
accessible as macros. You mark a subroutine as private by

placing Private before the Sub statement, for example:
Private Sub SampleSub(). Typically, other subroutines
within the same module call private subroutines. A
subroutine is called using the Call statement: Call
SampleSub(). Excel considers any subroutines that do not
have the Private keyword to be public. That being said,
the use of the Public keyword is really unnecessary
because a subroutine with no keyword is the same as one
with the Public keyword.

VBA does allow a subroutine to be called without the Call
statement. Even though VBA does not require it, you should
always use the Call statement to remind you that another
procedure is being called. Using the Call statement makes
your code much more readable because another user can
quickly look at the code and see that another subroutine is
being called.

CREATE A SUBROUTINE

EXCEL PROGRAMMING

50

CREATE A SUBROUTINE

043646-X Ch03.F 10/16/01 2:36 PM Page 50

� The Visual Basic Editor
inserts the End Sub command
when you press Enter.

‡ Type the Macro code.

° Switch to Excel and
open the Macro dialog.

Note: To open the Macro dialog
box, see Chapter 1.

� The new subroutine
appears as a macro along
with the other available
macros.

(Name)

Change Value

VBA PROGRAMMING BASICS 3
You may have situations where you want to pass parameters to subroutines. A parameter is
essentially a variable that receives an argument from the statement that you use to call the
subroutine. Just like standard variables, you want to specify the data type for the subroutine
parameters to avoid converting them into variants.

In the example, the Call statement calls the AddValues subroutine and passes in the values
contained in the Value1 and Value2 variables. You can call a subroutine that has parameters
from the Macro dialog box. Other procedures typically call subroutines with arguments.

Example:
Sub AddValues (Val1 As Integer, Val2 As Integer)

Dim Total As Integer

Total = Val1 + Val2

MsgBox (Total)

End Sub

Because you cannot call the subroutine as a macro from Excel, you must create a separate
subroutine that calls the AddValues subroutine. Within this subroutine you need to specify
the values for the Value1 and Value2 parameters that pass to the AddValues subroutine.

Example:
Sub TotalValues

Dim Value1 As Integer

Dim Value2 As Integer

Value1 = 5

Value2 = 7

Call AddValues (Value1, Value2)

End Sub

51

043646-X Ch03.F 10/16/01 2:36 PM Page 51

⁄ In the Project window,
click to highlight the project
where you want to add a new
module.

¤ Click Insert ➪ Module. � The Visual Basic Editor
creates a blank Code
window.

‹ Type Function.

› Type the name of your
function.

Note: See the section “An
Introduction to VBA” to learn about
naming functions.

Module4

(Name)(Name)

You can create functions to return a value to the
procedure that calls them. Unlike subroutines, you
cannot call functions directly from the Macro dialog

box. When working with macros, only a subroutine can call
a function. Like subroutines, functions consist of blocks of
VBA code grouped together to perform a common task or
series of tasks.

At first glance the value of a function may appear somewhat
limiting. But unlike a subroutine, which does not return a
value, a function always returns a value making them ideal
for performing calculations. For example, you can create a
function that always calculates the sales tax for an item and
returns that amount.

There are essentially two different types of functions:
private and public. All modules within the workbook can
access a public function. However, only other procedures
within the same module can access a private function. A

function is marked as private by placing Private before
the Function statement as in the example: Private
Function SampleFunc(Param) As Integer. Excel
considers any functions that do not have the Private
keyword to be public. That being said, using the Public
keyword is redundant because a function with no keyword
is the same as one with the Public keyword.

Other functions and subroutines within the same module
typically call private functions. Because functions return a
value, they are typically called as part of an expression. For
example, you can assign the value returned by a function to
a variable: FunctionValue = SampleFunc(Param).
This line of code exists in a subroutine that calls the
function. When Excel encounters this code, the function
executes using the value of the Param parameter and the
result of the function is placed in the FunctionValue
variable.

CREATE A FUNCTION

EXCEL PROGRAMMING

52

CREATE A FUNCTION

043646-X Ch03.F 10/16/01 2:36 PM Page 52

ˇ In parentheses, type the
names of the function
parameters.

Á Type As.

‡ Type the data type to be
returned by the function.

Note: See the section “An
Introduction to VBA” for more
information about VBA data types.

° Press Enter.

� The Visual Basic Editor
inserts the End Function
command when you press
Enter.

· Type FunctionName =
FunctionVar replace
FunctionName with
the function name and
FunctionVar with the
value of function.

� The function is created.

(Name) (Name)

VBA PROGRAMMING BASICS 3

You can create VBA functions that you can use within Excel
directly to create formulas. When you create a public function
in the Visual Basic Editor, it appears in the Insert Function
dialog box that displays when you click Insert ➪ Function
within Excel. The VBE places the functions that you create
under the User Defined category on the Insert Function
dialog box. You can use these VBA functions directly in your
worksheet to create formulas in the same fashion that you use
the built-in functions that come standard with Excel. Keep in
mind that the VBA functions you create are available only on
the Insert Function dialog box when the corresponding
workbook containing the function is open within Excel.
Therefore, if you create a specific function that you want to
use with all your workbooks, you must add the function to the
Personal Macro Workbook, Personal.xls, to ensure that it
is always available from within Excel. The Personal Macro
Workbook always opens with Excel, so any macros and
functions it contains are always available. See Chapter 1 for
more information on the Personal Macro Workbook.

53

043646-X Ch03.F 10/16/01 2:36 PM Page 53

⁄ Type Option Explicit at the
top of the module.

¤ Position the cursor after
the Sub statement.

‹ Type Dim.

› Type the name of the
variable.

ˇ Type As after the variable
name.

Á Type your variable data
type.

Note: See the section “An
Introduction to VBA” for more on
Variable names and Data types.

(Name) (Name)

You can use variable declaration to make your VBA
code run much more efficiently. By definition, variable
declaration means that you specify the data type of

the variable when you declare the variable. In other words,
if you intend for the variable to contain only integer values,
you declare an integer variable.

Unlike some programming languages, VBA lets you use
variables that have not been declared. However, if you
misspell a variable within your code, VBA may treat the
misspelled variable as a totally different variable. For
example, if you use the variable MthRent throughout your
code and inadvertantly type it as MnthRent, VBA sees it as
a new variable and assumes that MthRent and MnthRent
are two different variables. To ensure that variables are
always properly declared, use the Option Explicit
statement as the first statement in a module before your
type any procedure code.

You can set the Require Variable Declaration option in the
Visual Basic Editor to ensure that variables are always
declared for all created procedures. If you select this
option, the Visual Basic Editor places the Option
Explicit statement at the top of each created module.
You can select the Require Variable Declaration check box
on the Editor dialog within the Visual Basic Editor.

Even if the variable is declared, you should also type it as
part of the declaration. VBA treats all variables without a
data type as variants. A variant is VBA’s all-purpose data
type because it can essentially contain any type of data. In
fact, the same variable can contain an integer value at one
point and a string value at another location within the same
module. Because VBA is forced to interogate the value in
the variant variables to determine the type of data, your
code becomes less efficient when you do not specify the
data type.

DECLARE A VARIABLE

EXCEL PROGRAMMING

54

DECLARE A VARIABLE

043646-X Ch03.F 10/16/01 2:36 PM Page 54

‡ Press Enter.

° Type your variable name.

· Type an equal sign (=)
and a starting value for your
variable.

‚ Type MsgBox(VarName),
replacing VarName with the
name of your variable.

� The MsgBox function
displays a dialog box.

— Switch to Excel and run
the corresponding macro.

� The message box displays
the value to the variable you
specified in step 8.

(Name)

VBA PROGRAMMING BASICS 3
You can quickly specify a variable’s data type by using the
VBA type declaration characters within the declaration
statement. Using this method is basically a shortcut for
typing the variable.

Example:
Dim NewVar%

Excel provides six different characters that you can use to
specify the data type for a variable. In the sample
declaration, which declares a variable containing integer
values, the type declaration statement replaces the As
datatype portion of the declaration statement.

You can shorten your VBA code by
declaring variables using one Dim
statement. In other words, you declare
multiple variables on one line by typing
Dim followed by each variable and the
appropriate data type.

Example:
Dim Int1 As Integer, Int2 As Integer,
Int3 As Integer

Although VBA allows you to lump a
group of variables together using one
Dim statement and one data type, it
does not assign the data type you would
expect. For example, you typically
declare all three variables as integer.

Example:
Dim Int1, Int2, Int3 As Integer

In reality, VBA only assigns an integer
data type to Int3. VBA assigns the other
variables a data type of variant.

55

CHARACTER DATA TYPE

% Integer

& Long

! Single

Double

@ Currency

$ String

043646-X Ch03.F 10/16/01 2:36 PM Page 55

⁄ Create a subroutine.

Note: See “Create a Subroutine”
earlier in this chapter for more
information.

¤ Declare two variables as
numeric data types.

Note: See “Declare a Variable”
earlier in this chapter.

‹ Assign initial values to
each variable.

(Name) (Name)

You can perform many types of mathematical
calcuations within your macros. VBA provides several
different operators for performing mathematical

calculations within your procedures. Because Excel typically
contains numeric values, you frequently use VBA operators
to create Excel macros.

VBA includes eight different arithmetic operators for
performing calculations. These operators include +
(addition), – (subtraction), ^ (exponential), *
(multiplication), / (division), \ (integer division), and MOD
(Modulo - return remainder).

You typically use operators to perform a mathematical
operation on a specific variable. For example, you
frequently use the + operator with a For Next loop to
increment the loop counter variable. For example, you can
read the statement i = i + 1 to mean: “Take the value of
the variable i, add 1 to it, and place the result back in the
variable.” You frequently encounter this type of

mathematical calculation in source code for all
programming languages.

VBA provides three different operators that deal with
dividing one value by another: /, \, and MOD. Each of these
operators returns a different type of value. The /, or
division, operator divides two values and returns the entire
result, including any decimal portion that results when the
numbers do not divide evenly. The \, or integer division,
operator divides two values and returns only the integer
portion of the result. Any remainder is discarded with this
operator. Finally, the MOD operator divides two numbers and
returns only the remainder. This operator works well for
predetermining if two numeric values divide evenly. If a
zero is returned, the values divided evenly and no
remainder exists.

See “Arithmetic Operators” in the section “An Introduction
to VBA” for more information about the available operators
and the precedence order in which calculations take place.

PERFORM MATHEMATICAL CALCULATIONS

EXCEL PROGRAMMING

56

PERFORM MATHEMATICAL CALCULATIONS

043646-X Ch03.F 10/16/01 2:36 PM Page 56

› Type Cells(1,1) = Var1/Var2,
replacing Cells(1,1) with
the location for the result and
Var1 and Var2 with the
variables declared in step 2.

ˇ Press Enter.

� You can replace the /
(division operator) with any
of the VBA mathematical
operators.

Á Switch to Excel and run
the macro.

� The result of the
mathematical calculation
displays in the location
specified in step 4.

(Name)

VBA PROGRAMMING BASICS 3

You can reference a specific cell in a worksheet with the Cells property. With
this property, you can reference a specific cell in a worksheet using one of two
methods. The first method enables you to specify the row and column number
of the appropriate cell. By specifying the row and column number to reference
cell A5, you can type Cells(5,1). This is intepreted as the cell in the fifth row and
the first column. Using the cell reference method, you can reference rows from
1 to 65,536 and columns from 1 to 256.

The second method numbers each cell on the worksheet between 1 and
16,777,216 (65,536 rows by 256 columns). With this method you specify one
numeric value for the cell, which may confuse you, at first. For example, cell M1
is referenced as Cells(13).

57

EXCEL CELL COLUMN/ROW REFERENCE NUMERIC REFERENCE

A1 Cells(1,1) Cells(1)

A2 Cells(2,1) Cells(257)

C5 Cells(5,3) Cells(515)

043646-X Ch03.F 10/16/01 2:36 PM Page 57

⁄ Position the cursor after
the Sub statement of a
subroutine.

¤ Type Const.

‹ Type the name of the
constant.

Note: See the section “An
Introduction to VBA” for more
information for naming variables
and constants.

› Type As after the
constant’s name.

ˇ Type your constant data
type.

Note: See the section “An
Introduction to VBA” for more
information.

(Name) (Name)

You can create constants to refer a value, or a string
that never changes. For example, given that a week
always contains seven days, you can declare a constant

with a value of 7 when you place that value in a procedure.

Just as you do with variables, you declare constants with a
specific data type. In fact, constants use the same data types
that variables use. If you do not specify a data type for a
constant, VBA treats the value as a variant. Because
constants never change, the functionality of your code to
specify a data type improves. For more information, refer to
the section “An Introduction to VBA.”

Unlike a variable, you cannot alter a constant’s value after
you declare that constant. For example, if you assign the
constant NewVar a value of 32 and attempt to reassign it a
value of 45 you receive an error message when your code
executes.

Although VBA allows you to declare constants anywhere in
your code, consider declaring them at the beginning of the
procedure. You can declare multiple constants on one line
of code by placing a comma between each constant
definition. For example, the following code declares two
constants: Const NewString = “Excel Macros”,
Version As Integer = 2002

You can name constants using the same naming rules as
variables. Essentially a constant can contain as many as 255
characters in length and use both alphabetical and numeric
characters. For more information, see the section “An
Introduction to VBA” earlier in this chapter.

By default, a constant value is private and only available for
use within a particular procedure or module for constants
declared at the code module level. You can make constants
public and therefore useable by other procedures within
the same workbook project by placing the Public
keyword before the Const statement.

CREATE A CONSTANT

EXCEL PROGRAMMING

58

CREATE A CONSTANT

043646-X Ch03.F 10/16/01 2:36 PM Page 58

Á Type an equal sign (=)
and a starting value for your
variable.

‡ Press Enter.

° Type MsgBox(ConstName),
replacing ConstName with
the name of your Const.

Note: See Chapter 7 for more
information on the MsgBox
function.

· Run the corresponding
macro in Excel.

� The message box displays
the value to the variable you
specified in step 6.

(Name)

VBA PROGRAMMING BASICS 3

VBA provides over 700 built-in constants, which you can insert into your
code at any point without declaring them. The Excel VBA object model
adds another 1,266, all of which begin with either xl or vb. You can use
these constants anywhere, and you do not need to know their actual
values in order to use them. Two of the most commonly used VBA
constants deal with inserting carriage returns, vbCrLf, and tab characters,
vbTab, in your output. Although each of these constants have a numeric
equivalent, you simply type the name of the appropriate constant value in
your code. To find a list of all VBA and Excel VBA Object Model constants,
press F2 to view the Object Browser and search for Constant. Most of the
constant values are self-explanatory, based upon the name. Appendix A
also includes many of the constant values that you use throughout this
book. Many parameter values require a specific type of constant value.
For example, with the MsgBox function you use one of the
vbMsgBoxStyle constants for the value of the Buttons parameter to
indicate the type of buttons on the message box, as follows:

Example:
MsgBox(“Select button”, vbYesNoCancel)

59

043646-X Ch03.F 10/16/01 2:36 PM Page 59

⁄ In the Project window,
double-click to select the
module that contains the
procedure you want to
document.

� The selected module code
displays in a Code window.

¤ Place the cursor at the
end of the procedure
declaration line.

‹ Press Enter.

� Excel inserts a blank line.

Module3

(Name)(Name)

You can provide your reader an explanation of how
you intend your code to function by commenting
your code. A comment adds descriptive text to your

code that provides the reader some sense of the
functionality of the referenced code.

Whenever a subroutine or function executes VBA ignores
comment lines, so you can and should use them liberally. It
may seem monotonous to describe your code today,
because you already know what it does. However,
comments help you quickly determine code functionality,
especially a few months from now when you come back to
work with the code again. Of course, comments only help if
they provide enough information to describe the code. A
reader should be able to read the comments only, without
studying the code, and get a good sense of what the code

does. For example, a comment like “sums the values” does
not provide any information about the code other than
stating that the code adds some values together. A better
comment is “Sums the values in cells A1 and A2 and places
the result in cell A3” because it describes the actual process.

You can add comments as entire lines of text or place them
at the end of a line of code. To indicate a comment, type an
apostrophe at the beginning of the comment line. VBA
ignores all text from the apostrophe to the end of the line.

The only time that VBA does not treat an apostrophe as a
comment is when you type the apostrophe within
quotation marks as part of a string of text. For example,
VBA does not treat the following statement as a comment:
Book = “Jinjer’s Book”.

COMMENT YOUR CODE

EXCEL PROGRAMMING

60

COMMENT YOUR CODE

043646-X Ch03.F 10/16/01 2:36 PM Page 60

› Type an apostrophe (’) at
the beginning of the line.

ˇ Type comments
describing the selected
procedure.

� Start each comment line
with an apostrophe.

Á Place the cursor at end of
a variable declaration.

‡ Type an apostrophe (’).

° Type a description for the
selected variable.

� When you run the selected
procedure, VBA ignores the
comment lines.

(Name) (Name)

VBA PROGRAMMING BASICS 3

You can use comments for testing your code. If you
have a line of code that is not functioning properly,
you can comment it out and run your macro without
it. This process eliminates the need to delete the line
of code, and you can reactivate the commenting by
simply removing the apostrophe at the beginning of
the line. The following code comments the
Selection.NumberFormat statement out so that
the cell formatting remains unchanged when the
macro runs.

Example:
Sub Sum_Values

ActiveCell.FormulaR1C1 = “=SUM(RC[-6]:RC[-1])”

Range(“B3:H3”).Select

Range(“H3”).Activate

‘ Selection.NumberFormat = “$#,##0.00”

End Sub

61

043646-X Ch03.F 10/16/01 2:36 PM Page 61

⁄ Create a subroutine.

¤ Press Enter.

‹ Type Dim TestString1
As String * 10, replacing
TestString1 with the first
string variable and 10 with
the string length.

� You can repeat step 4
to create a second string
variable.

› Type Dim TestString3
As String * 20, replacing
TestString3 with the
variable to contain the
concatenated string and
20 with the string length.

ˇ Type TestString1 = “Excel”,
replacing TestString1
with the variable in step 4
and “Excel” with the string
value.

� Repeat step 6 for the
second variable.

(Name)(Name)

You can join the contents of two string variables —
actually multiple strings — together to create one
string. You commonly refer to the process of joining

strings together as concatenation.

The only real limitation to joining strings together is the
potential of exceeding the declared or maximum length of
the string variable receiving the joined string. When you
declare a fixed-length string variable using the Dim
statement, you also typically specify that string’s maximum
length. A combined set of strings can contain a maximum of
65,535 characters. Variable-length string variables, on the
other hand, can hold up to 2 billion characters, and you do
not have to specify their length.

Each character in a string takes 1 byte of storage plus
additional storage for the string header. When you declare
a string, you specify the size for a fixed-length string. VBA

does not extend the size of a fixed-length string to store a
larger string. If two joined strings form a string larger than
the space allows, VBA truncates the string to fit the alloted
space. For example, if you name a string variable Name with
a fixed-length of ten characters, and you specify Name =
“Hungry “ & “Minds”, the Name variable contains string
Hungry Min. VBA truncates the remaining two characters,
ds, because the string variable can only hold ten characters.
Keep in mind that VBA also treats spaces that you add to
the strings as characters.

Although the concatenation operator (&) joins strings
together, VBA also allows you to use the + (addition)
operator to combine strings. Using the concatenation
operator to show a distinction between a string
concatenation and an arithmetic addition statement
adheres to better coding standards.

JOIN TWO STRINGS

EXCEL PROGRAMMING

62

JOIN TWO STRINGS

043646-X Ch03.F 10/16/01 2:36 PM Page 62

Á Type TestString3 =
TestString1 & TestString2
replacing TestString3
with the variable to contain
the concatenated string
and TestString1 and
TestString2 with
the string variables.

‡ Type Cells(1,1) =
TestString3, replacing
TestString3 with the
variable containing the
concatenated string.

° Run the corresponding
macro in Excel.

� The value of the first cell
becomes the concatenated
string created in step 7.

(Name)

VBA PROGRAMMING BASICS 3
To ensure that a string has
desired length, you can
use the Len function to
determine the number of
characters in the string.
Based upon the value
returned by the built-in
VBA function, you
determine whether you
can concatenate the
strings without VBA
truncating them. For
example, if each string
you want to join is ten
characters in length, you
must make the variable
that receives the
concatenated string at
least 20 characters in
length, or VBA truncates
the string.

If you check the length of a fixed-length variable, it always returns the
declared string length, even if the number of characters saved in the string
is less than the declared length, as illustrated in the following examples.

Example
Dim StringTest1 As String * 15

StringTest1 = “SampleString”

Len(StringTest1)

In the above, the StringTest1 string variable has a fixed-length of 15
no matter what you add to the variable. When you add the string
“SampleString” to the variable — even though the string only has
12 character — the Len function returns a value of 15.

Example
Dim StringTest2 As String

StringTest2 = “SampleString”

Len(StringTest2)

The StringTest2 string variable has a variable length. When you add
the string “SampleString” to the variable, the length of the variable
adjusts to fit the string. Because the length of the string is 12 characters,
the Len function returns a value of 12.

63

043646-X Ch03.F 10/16/01 2:36 PM Page 63

Designed around the ability to access and manipulate
objects, VBA has access to an Object Model in each
Microsoft Office product, including Excel, that

enables you to interact with each application. Using the
Object Model, you can access everything from the entire
application to an individual cell in a worksheet.

Objects represent the individual pieces of each application.
Every object has specific properties and methods associated
with it. You use properties and methods to capture events
and changes that occur with the selected object.

With such an enormous number of objects, properties, and
methods, you may find remembering them all is virtually
impossible. Luckily, the Visual Basic Editor provides the
Object Browser, with which you can quickly locate and
determine the corresponding properties and methods
available for an object. You can learn how to use the Object
Browser by performing the tasks in this chapter.

AN INTRODUCTION TO THE EXCEL
OBJECT MODEL

EXCEL PROGRAMMING

EXCEL OBJECTS

The Excel Object Model provides nearly 200 different
objects and more than 5,000 corresponding properties
and methods for use in your VBA code. Each object
represents an element of the Excel application. For
example, the Application object refers to the entire
Excel application, but a Worksheet object refers to an
individual worksheet.

Most objects have child objects. A child object is an
object that is part of a larger object. For example, a
Worksheet object is a child object to a Workbook
object because worksheets are part of a workbook. All
objects in the Excel Object Model are the children of at
least one other object, except the Application
object. All objects are under the Application object
either as children or children of another Application
object. Because of this hierarchy within the Object

Model, you typically need to reference the parent
object with a child object. For example, to access the
second worksheet in the current workbook you type
ThisWorkbook.Worksheets(2).

The Object Model groups common objects into
collections. For example, the Workbook object
identifies an individual workbook, but the Workbooks
collection refers to all open workbooks.

Although the list of available objects is rather extensive,
you use only about six frequently: Application,
Workbook, Worksheet, Chart, Range, and
Dialog. Because you use these objects extensively
when you work with Excel Macros, it is a good idea to
familiarize yourself with these objects, which the
remainder of this book covers.

Application Object

The Application object represents the entire Excel
program. All other objects are children of the
Application object on the Excel Object Model.
The Application object has several different
properties and methods. Those that return the most
common user-interface values, such as the

ActiveCell property, do not use of the
Application object in the statement. Both of these
statements are valid:

Example:
Application.ActiveCell

ActiveCell

Workbook Object

The Workbook object represents an individual
workbook that you have open in Excel. You can use the
Workbooks property of the Application object to

return a Workbooks collection, which contains all of
the Workbook objects for the workbooks that you
currently have open in Excel. See Chapter 9 for more
information about dealing with the Workbook object.

64

053646-X Ch04.F 10/16/01 2:36 PM Page 64

WORKING WITH THE EXCEL OBJECT MODEL 4
EXCEL OBJECTS (CONTINUED)

Worksheet Object

The Worksheet object represents an individual
worksheet that you have open in Excel. You can use the
Worksheets property of the Workbook object to

return a Worksheets collection that contains all of the
Worksheet objects for worksheets available in a
particular workbook. See Chapter 10 for more
information about working with the Worksheet object.

Chart Object

The Chart object represents an individual Excel chart.
You can use this object to create and reference charts
that you embed in individual worksheets or that reside
in chart sheets. See Chapter 13 for more information
about working with charts.

Range Object

The Range object enables you to reference an
individual cell or range of cells. Range objects are
returned by several different properties and methods,
including the Range property.

Example:
Range(“B3”)

See Chapter 11 for more information about dealing
with the Range object.

Dialog Object

The Dialog object references each of the built-in
dialog boxes available in Excel. Excel stores these dialog
boxes in the Dialogs collection. You can use the
constant value associated with each Excel dialog box
object to view the dialog. You can view individual
dialog boxes by using the Show method.

The names for each of the dialog boxes begin with
xlDialog followed by a unique value that references
the appropriate dialog box. For example, xlSaveAs
references the Save As dialog box in Excel.

This object refers only to existing Excel dialog boxes. It
does not refer to any new dialog boxes that you may
create. For information about creating dialog boxes,
see Chapter 12.

CEXCEL PROPERTIES

Each object in the Excel Object Model has corresponding
properties. Use of these properties enables you to view
or change the characteristics of the object. For example,
you can use the Value property to change the value of a
range in a Range collection.

You can also use properties to change an aspect
of behavior for an object. For example, you use

the Hidden property to hide or unhide an
object.

To specify a property for an object, combine the
object name with the property name, as follows:

Example:
Range.Value = 45

EXCEL METHODS

Each object in the Excel Object Model corresponds to
certain methods. You can use the available methods to
perform actions on or for the selected object. For
example, you can use the Copy method to copy the
worksheet specified by the Worksheet object and place
it in another location in the corresponding workbook.

To specify a method for an object, combine the object
name with the method name, as in the following example:

Example:
Worksheets(1).Copy After:=Worksheets(3)

OBJECT COLLECTIONS

The Excel Object Model allows for multiple objects of the
same type, such as multiple open Worksheet objects in
a workbook. To make these objects more accessible,
Excel groups them together in an object collection. For
example, each Workbook object contains a Worksheets
collection. You access a collection similar to an array

where an index value is used to reference the desired
value in the collection. The following code accesses the
second worksheet in the Worksheets collection:

Example:
Worksheets(2)

65

053646-X Ch04.F 10/16/01 2:36 PM Page 65

SONAL.XLS - Module 1 (Code)

OPEN THE OBJECT BROWSER

⁄ Open the Code window
for the desired module.

Note: See Chapter 2 for more
information on working with
modules.

¤ Click View ➪ Object
Browser.

� Alternately, you can
press F2.

SEARCH THE OBJECT BROWSER

� The Object Browser dialog
box displays.

‹ Click to display a list of
available libraries.

› Click the desired library.

66

USING THE OBJECT BROWSER

Eliminating the need to remember required syntax, the
Object Browser enables you to quickly search for an
object, property, or method that matches a desired

keyword. For example, to add a new worksheet when you
do not remember the appropriate method, you can use the
search option on the Object Browser to find all objects that
deal with the Add method.

The Object Browser refers to each object as a class and lists
them within the Classes list box. The Object Browser lists all
properties and methods associated with an object selected
in the Classes list box within the Members list box. You view
the associated properties and methods of an object by
selecting the object. The Members list box also shows
which VBA functions you can use to return the selected
object.

The Object Browser has six different object libraries, which
you can use to view object information: Excel, MSForms,
Office, Stdole, VBA, and VBA project. You can view all

information by selecting the All Libraries option, or you can
select an individual object library.

The Excel object library contains all of the objects, methods,
and properties in the Excel Object Model. These are the
objects discussed throughout this book.

Select the MSForms object library to view objects that you
can use to create custom dialog boxes for your macros.

The Office object library contains objects that are common
to all Microsoft Office products.

Select the Stdole object library to find objects that you can
use for OLE automation.

The VBA object library contains specific Visual Basic for
Applications objects.

Each open workbook and the corresponding modules are
listed as available objects under VBAProject.

USING THE OBJECT BROWSER

EXCEL PROGRAMMING

053646-X Ch04.F 10/16/01 2:36 PM Page 66

workbook

(Name)

workbook

Object Browser

(Name)

ˇ Type the search string in
the field under the libraries.

Á Click the Search
button ().

� The Search Results
window displays the objects
that match the specified text.

‡ Select the desired search
results.

� The corresponding
properties and methods
display in the Members of
window.

WORKING WITH THE EXCEL OBJECT MODEL 4

Besides maintaining a list of all objects with their
corresponding properties and methods, the
Object Browser keeps track of the constant
values assigned to object properties. It also
keeps track of parameter values for various
object methods and VBA functions. For example,
the ChartType property enables you to specify
the type for a chart. You need to use one of the
XlChartType constant values as the value for
this property. For example, ThisWorkbook.
Chart.Type = xlPie creates a pie chart. The
ChartType property accepts only one of these
constant values. You can view the list of available
XlChartType constants within the Object
Browser by typing ChartType in the Search Text
field and clicking the Search button (). If you
select the XlChartType value in the Classes list
box, you see all of the chart type constant values
within the Members list box.

You can quickly find more information about an
object, property, or method selected on the Object
Browser window by pressing F1. When you press F1,
the Microsoft Visual Basic Online Help displays help
for the item selected on the Object Browser window.

67

053646-X Ch04.F 10/16/01 2:36 PM Page 67

Objects.xls - Module 3 (Code) Objects.xls - Module 3 (Code)

(Name) (Name)

⁄ Click to place after the
Sub statement.

¤ Type Dim VarName As
ObjectType, replacing
VarName with the name of
the object variable and
ObjectType with the Excel
object type.

‹ Press Enter.

› Type Set VarName =
ExcelObject, replacing
VarName with the variable
name and ExcelObject
with the object assigned to
the variable.

ˇ Press Enter.

You can simplify your VBA code by creating object
variables. Creating object variables enables you to
reference a specific object within your code. Although

you do not need to use an object variable, VBA enables you
to reference objects directly by typing the complete object
reference each time you want to work with an object; not
only is this method more cumbersome, but it also makes
you code run more slowly. Using object variables, on the
other hand, greatly simplifies your code because object
variables are typically shorter than complete object
references. Also, VBA code typically runs faster when you
use object variables in your code.

You declare object variables in much the same fashion as a
standard variable. You use the Dim statement to declare the
variable and the As statement to identify the variable as an
object variable. The data type for the variable is the
corresponding object type.

For example, the statement Dim ObjectVar As
Worksheet creates an object variable named ObjectVar
that is a Worksheet object. You can create object variables
for each of the objects in the Excel Object Model.

After you create an object variable, you assign a specific
object reference to th variable. You assign an object to a
variable in basically the same fashion as with standard
variables. The difference is that the Set statement must
precede the assignment statement. The following statement
sets the value of ObjectVar to point to Sheet1 in the
workbook: Set ObjectVar =
ActiveWorkbook.Worksheets(“Sheet1”). Also, when
you assign an object to a variable, you are only assigning a
reference to the object to the variable and not the actual
object value. In other words, in the sample line of code,
ObjectVar simply points to Sheet1 within the active
workbook.

CREATE AN OBJECT VARIABLE

EXCEL PROGRAMMING

68

CREATE AN OBJECT VARIABLE

053646-X Ch04.F 10/16/01 2:36 PM Page 68

Objects.xls - Module 3 (Code)

(Name)

Á Type MsgBox(VarName),
replacing VarName with the
variable created in step 2.

‡ Switch to Excel and run
the corresponding macro.

� The message box displays
the contents of the object
variable.

WORKING WITH THE EXCEL OBJECT MODEL 4

If you want to refer to the currently selected
worksheet in a workbook, you can do so by
using the ActiveSheet property. You use this
property in place of an object reference to a
specific worksheet, such as Worksheets(1),
which refers to the first worksheet in a
workbook. Using the ActiveSheet property,
you can reference whichever worksheet is active
at the time your procedure executes. For
example, SheetName = ActiveSheet.Name
assigns the name of the currently active
worksheet to the SheetName variable.

The ActiveSheet property refers to any type of
sheet within a workbook. Therefore, if the
currently selected sheet is actually a Chart sheet,
the ActiveSheet property returns a reference
to the appropriate chart sheet. See Chapter 10
for more information on working with
worksheets.

When you create object variables you are
essentially just creating object pointers. Unlike a
standard variable that is the name of a memory
location containing the variable’s value, an object
variable actually points to the memory location that
stores a pointer to the object. For example, in the
following code ObjVar stores the pointer to cell B2
in the worksheet.

Example:
Dim ObjVar As Range

Set ObjVar = ActiveSheet.Cells(2, 2)

69

053646-X Ch04.F 10/16/01 2:36 PM Page 69

Objects.xls - Module 4 (Code)

(Name)

Objects.xls - Module 4 (Code)

(Name)

⁄ Type Dim FirstCell As
Range, replacing FirstCell
with the variable to be used
as the Range object.

¤ Type Set FirstCell =
ActiveSheet.Cells(1,1),
replacing FirstCell with
the variable in step 1 and
ActiveSheet.Cells(1,1)
with the appropriate range of
cells.

Note: See the section “Create an
Object Variable” for more
information.

‹ Type With FirstCell,
replacing FirstCell with
the variable created in step 1.

› Press Enter.

You can change the value of an object, its appearance,
and so on, by modifying the properties associated with
an object. When working with objects, you do not

change the object directly; instead, you make changes to
the object by altering the values of the properties
associated with the object. For example, when working with
a cell on a worksheet, you use the Value property to
change the value of the cell. If you change to the font style,
however, you modify the properties for the Font object,
such as the Bold, Italic, Underline, and Size
properties.

When you make several property changes to the same
object, doing so typically requires repeating the name of
the object each time. Even if you have assigned the object
to an object variable, you must repeat the variable name.
For example, if you use the statement Set CellFont =
ActiveSheet.Cells(1,1).Font as the object variable
for the Font object, you still need to reference the Font

object variable each time you change a font attribute. To set
the font to bold, you type CellFont.Bold = True. Then, if you
want to set the font size, you again reference the Font
object by typing CellFont.Font.Size = 12.

Even with the use of an object variable, you must repeat the
object variable name each time you change a font setting,
making the code complex. You can simplify this type of
code with the With statement. Instead of typing the object
variable reference, you simply type With CellFont followed
by each property statement. For example, to underline
values in the cell you type .Underline = True. When you
complete you list of property settings, you type End With to
mark the end of the With statement.

The With statement enables you to specify statements that
refer to the same object. You need only to specify the
object name with the With statement to apply all
statements to that object.

CHANGE THE PROPERTIES OF AN OBJECT

EXCEL PROGRAMMING

70

CHANGE THE PROPERTY OF AN OBJECT

053646-X Ch04.F 10/16/01 2:36 PM Page 70

Objects.xls - Module 4 (Code)

(Name)

ˇ Change the object’s
properties.

� You can type a cell value.

� You can type Font.X = True,
replacing X with Bold,
Italic or Underline.

� You can type .Font.Color =
RGB(X, Y, Z), replacing X, Y,
and Z with RGB values.

� You can type code to
specify a desired line style
constant.

Á Type End With.

‡ Switch to Excel and run
the macro.

� The content of the first cell
is changed to specified value
and the specified font and
border attributes are applied.

WORKING WITH THE EXCEL OBJECT MODEL 4

Some objects, such as the Font
object, provide a Color property
that determines the color of the
object. The RGB function works
well for specifying the font color.
When you use this function, you
select the desired color by
indicating the amount of red,
green, and blue in the color. You
specify the color values with an
integer value between 0 and 255.
For example, you type (0,0,0) for
the color black.

71

COLOR RED VALUE GREEN VALUE BLUE VALUE

Black 0 0 0

Blue 0 0 255

Cyan 0 255 255

Green 0 255 0

Magenta 255 0 255

Red 255 0 0

White 255 255 255

Yellow 255 255 0

053646-X Ch04.F 10/16/01 2:36 PM Page 71

Objects.xls - Module 2 (Code)

(Name)

Objects.xls - Module 2 (Code)

(Name)

⁄ Create a new subroutine.

Note: See Chapter 3 for information
on creating subroutines.

¤ Type Dim WSRef1 As
Worksheet, replacing
WSRef1 with the variable
name and Worksheet with
the object type.

‹ Type Dim WSRef2 As
Worksheet, replacing WSRef2
with the variable name and
Worksheet with the object
type.

› Type Dim Result As
Boolean, replacing Result
with the comparison variable.

ˇ Assign each variable
object to point to the same
object using the Set
command.

You can use object comparison to determine if two
object variables reference the same object. Unlike
standard variables, which actually contain values that

you can compare, the object variable does not contain the
object, but references it. That being the case, when you
compare two object variables, you are really checking if
they point to the same object. For example, you may want
to check if the currently active workbook is the first
workbook. You accomplish this using object comparison.

When you compare standard variables, you use the =
(equals sign) operator to determine if they are the same. For
example, If Value1 = Value2 Then compares two
standard variables. See Chapter 3 for more information on
working with standard variables.

When comparing objects, instead of the = operator, you use
the Is operator. For example, you write an If Then
statement to compare two variables as follows: If
ObjVal1 Is ObjVal2 Then. This statement looks at the
object referenced by ObjVal1 and checks if it is the same
as the object referenced by ObjVal2.

Besides comparing the values of two different operators,
you can also use the Is operator to determine if an object
variable has an assigned value. To do this, the Is operator
checks if the variable has a value of Nothing, as shown in
the following example: If ObjVal1 Is Nothing Then.
When you use this type of comparison, the comparison
statement returns a value of True if the object variable
does not point to an object. If the object variable references
a specific object, the comparison statement returns a value
of False.

COMPARE OBJECT VARIABLES

EXCEL PROGRAMMING

72

COMPARE OBJECT VARIABLES

053646-X Ch04.F 10/16/01 2:36 PM Page 72

Objects.xls - Module 2 (Code)

(Name)

Á Type Result = ObjVar1 Is
ObjVar2, replacing ObjVar1
and ObjVar2 with the object
variables.

‡ Type MsgBox (Result),
replacing Result with the
variable in step 4.

° Switch to Excel and run
the macro.

� The message box displays
a value of True if the objects
point to the same location.

WORKING WITH THE EXCEL OBJECT MODEL 4

You can also use the Is operator with the
Nothing keyword to ensure that an object
variable points to a valid object. To do this, you
compare the value of the object variable to the
Nothing keyword with an If Then statement,
as shown in this example. If the If Then
statement returns a value of True, the object
variable does not contain a reference to a valid
variable.

Example:
If objvar Is Nothing Then

MsgBox ("Variable does not point to a
valid object")

End If

You use the Nothing keyword to free an object
variable. By doing so, you free up the memory
required to store the object pointer in the object
variable. When an object has no variable references
pointing to it, VBA destroys it. Therefore, if you have
multiple object variables pointing to the object, you
need to set each one of them to Nothing, as
shown in this example:

Example:
Set objvar = Nothing

73

053646-X Ch04.F 10/16/01 2:36 PM Page 73

Objects.xls - Module 5 (Code)

(Name)

Objects.xls - Module 5 (Code)

(Name)

⁄ Create a new subroutine. ¤ Type Dim WSNum As
Integer, replacing WSNum with
the variable to store
worksheet count.

‹ Type WSNum =
Worksheets.Count, replacing
WSNum with the variable in
step 2.

� The Count property
returns the number of
worksheets in the Worksheet
collection.

You typically use Excel Object methods to modify to
objects. For example, you use a Delete method with
a Range object to remove the values within a specific

range of cells. You typically create actions using the
methods associated with a particular object.

The Excel Object Model contains nearly 200 different
objects, and provides several different methods that
correspond to each of the objects that you use to perform
an action either to or on behalf of the corresponding
object. For example, you can use the Copy method to copy
a Worksheet object and place the copy in another location
within the same Workbook object.

You use methods with Excel objects in much the same
fashion as properties. To use an object method, you specify
the appropriate object followed by a period and then the
method you want to use. If the selected method has any
arguments, you place these after the method:

Worksheet(“Sheet2”).Copy
Before:=Worksheet(“Sheet1”). In this example, the
code copies the specified worksheet, Sheet2 and places a
copy of it before Sheet1 in the current workbook.

Most methods require different arguments which specify
how to modify the corresponding object. When you use a
method that has arguments, typically at least one of the
arguments is required, but the other arguments can be
optional. In the example, the Copy method requires that
you use either the Before or After argument value to
specify the location for placing the copied worksheet. In
this situation, although both arguments are optional, you
must specify at least one of the two arguments. You use
the Before argument to specify the sheet in front of which
you want to place the copied worksheet, or the After
argument to specify behind which sheet you want to place
the copied worksheet. See Chapter 10 for more information
about copying Excel worksheets.

USING AN OBJECT METHOD

EXCEL PROGRAMMING

74

USING AN OBJECT METHOD

053646-X Ch04.F 10/16/01 2:36 PM Page 74

Objects.xls - Module 5 (Code)

(Name)

› Type ActiveSheet.Move
After:=Worksheets(WSNum),
replacing WSNum with the
variable in step 2.

� Alternately, you can type
Before instead of After.

ˇ Switch to Excel and run
the macro.

� Excel moves the currently
selected worksheet per your
specifications.

WORKING WITH THE EXCEL OBJECT MODEL 4

VBA enables you to use named arguments with
procedures (functions and subroutines),
properties, and methods. With a named
argument, the name of the parameter passes
along with the argument value. Named
arguments are most useful when calling a
procedure that has optional arguments. With a
procedure that has optional arguments, if you do
not indicate the argument, a comma (,) indicates
a placeholder for the argument. For example, the
Protect method that protects charts,
worksheets, and workbooks has 16 different
optional arguments when used to protect a
worksheet. Typically, calling this property
requires a placeholder for each argument to
specify a value for the last parameter, as shown
in the example.

Example:
Worksheets(1).Protect(, , , , , , , , , , , ,
, , , True)

If you use named arguments, you specify the name
of the arguments you want to use followed by a
colon and equals sign (:=) and finally the value.

Example:
Worksheets(1).Protect Password:=”Excel”,
AllowSorting:=True

You can place named arguments in any order, and
you do not have to specify a value for every
argument. This means, that even though the
Password parameter comes before the
AllowSorting parameter in the list of
parameters for the Protect method, you can
specify them in any order.

75

053646-X Ch04.F 10/16/01 2:37 PM Page 75

Objects.xls - Module 6 (Code)

(Name)

Objects.xls - Module 6 (Code)

(Name)

⁄ Type Sub Open_DialogBox().

¤ Press Enter.

� The End Sub statement
appears.

‹ Type Application.Dialogs
(xlDialogProperties), replacing
xlDialogProperties
with the constant for the
desired dialog box.

You can display all of the dialog boxes available in Excel
in your macros by using VBA. By displaying a particular
dialog box, you can incorporate that Excel

functionality directly into your procedure. The Excel Object
Model contains a Dialog object for each of the Excel
dialog boxes. These objects are part of the Dialogs
collection.

You can access each of the Excel dialog box objects by
specifying the corresponding constant value. The constant
value for each dialog box begins with xlDialog followed
by the name for the dialog. For example, the constant for
the Excel Save As dialog box is xlDialogSaveAs.

You can use the Show method only when working with the
Dialogs collection. This method essentially displays the
dialog box that you specified.

Although you can open a specific dialog box, you cannot
access the values that a user specifies on the dialog box.
You can only determine what the user selects by looking at
the results after the user dismisses the dialog box. You can,
however, use the arguments available with the dialog box to
indicate how the dialog box opens. For example, the
Properties dialog box (xlDialogProperties) has the
following arguments: title, subject, author,
keywords, and comments. You can specify custom values
for these arguments when you open the dialog box.

Excel provides more than 200 different dialog boxes, and
the Excel Object Model provides a constant value to access
each one. You can find a complete list of the dialog box
constants in the online help that comes with the Visual
Basic Editor. Another good method for viewing the dialog
box constants is using the Object Browser and searching for
the XlBuiltinDialog constants. See the section “Using
the Object Browser” for more information.

DISPLAY A BUILT-IN DIALOG BOX

EXCEL PROGRAMMING

76

DISPLAY A BUILT-IN DIALOG BOX

053646-X Ch04.F 10/16/01 2:37 PM Page 76

Objects.xls - Module 6 (Code)

(Name)

Expenses

› Type .Show “Expenses”,
“2000 Expenses”
replacing “Expenses” and
“2000 Expenses” with the
arguments associated with
the selected dialog box.

ˇ Switch to Excel and run
the Open_DialogBox()
macro.

� The Properties dialog box
displays with the specified
argument in the appropriate
fields on the dialog box.

WORKING WITH THE EXCEL OBJECT MODEL 4

You can capture the results of a button pressed on a displayed
dialog box by assigning the Show property statement to a
variable. The value of this variable is True if the user clicks
OK, and False if the user clicks Cancel in the dialog box.

Excel has over 240 different dialog boxes that display
throughout its application. You can display any of these dialog
boxes using the appropriate constant. The following table lists
a few of the most commonly used Excel dialog boxes:

CONSTANT DISPLAYS

xlDialogFIleDelete The Delete dialog box, where you select files to remove.

xlDialogInsert The Insert dialog box for adding additional cells to a worksheet.

xlDialogNew The New Document task pane.

xlDialogOpen The Open dialog box.

xlDialogPrint The Print dialog box.

xlDialogSaveAs The Save As dialog box.

77

053646-X Ch04.F 10/16/01 2:37 PM Page 77

You can assign values to variables at any point within a
procedure after declaring the variable using the Dim
statement. VBA uses variables as storage locations for

data values. By using a variable you can change the value of
an expression by simply assigning a different value to the
variable. Most programmers commonly initialize, or assign
an initial value, immediately after declaring the variable, but
you can change the value of the variable at any location in
the code as long as the variable is valid.

You assign a value to a variable that matches the data type
specified for the variable. In other words, if you declare the
variable as an integer value, you can only assign integer
values to the variable. If you attempt to assign a value other
than an integer to the variable, such as a string of text, you
receive an error message when you run the macro.

If you assign a string value to a variable declared as an
integer, Excel returns a “Type Mismatch” error when you
run the macro. If you assign the variable a decimal value,

such as 45.67, VBA truncates the decimal portion of the
value and retains the integer value. See Chapter 3 for more
information on data types.

When working with values that you type in a worksheet or
dialog box, you need to check them before assigning them to
variables to ensure that they are the proper data type. You
can use the IsNumeric function to check the value before
assigning it to a variable to ensure that a cell contains a
numeric value. The IsNumeric function looks at the
specified value and returns a Boolean value of True for
numeric values.

The Variant data type works well in situations where the
returned value is a different data type than the variable
needs. When you use a Variant data type, VBA accepts any
type of data value in the variable. Because VBA code runs
more efficiently when you declare an actual data type, such
as Integer, or Long, you should limit your use of the Variant
data type.

⁄ Create a new subroutine.

Note: See Chapter 3 for information
on creating subroutines.

¤ Declare variables using
the Dim statement.

‹ Initialize the variables to
zero.

› Type If IsNumeric(Value)
Then, replacing Value with
the assigned variable.

Note: See Chapter 6 for information
on using the If Then statement.

ˇ Assign the value to the
variable.

Á Type End If to end the If
Then statement.

‡ Repeat steps 5 through 7
for each value.

78

ASSIGN VALUES TO VARIABLES

EXCEL PROGRAMMING

ASSIGN VALUES TO VARIABLES

063646-X Ch05.F 10/16/01 2:37 PM Page 78

79

° Type Cells(3, 1) = Var1 +
Var2 replacing (3, 1) with
the cell location, Var1 with
the first variable and Var2
with the second variable.

� Excel assigns the sum of
the variables to the cell. If
either cell is not numeric,
you can use a value of 0
in the equation.

· Switch to Excel and run
the macro.

Note: To learn how to run a macro,
see Chapter 1.

� If both values are numbers,
Excel places the sum in the
cell. Otherwise, Excel uses
the value zero for the cells
that do not contain a number.

USING VARIABLES AND ARRAYS 5
VBA provides different functions for checking a
value to make sure that it is the desired data type.
You should check the data type of a value before
assigning it to a variable or performing any type of
operation. These functions ensure that no error
messages occur if the wrong data type passes to a
variable. Each of these functions return a Boolean
value of True or False, indicating whether the
value is the specified type.

Typically you combine these VBA functions with
an If Then statement that performs an action if
the value is the appropriate data type. See
Chapter 6 for more information on using If
Then statements. For example, the following code
only executes if the value of the NumVal variable
is a number.

If IsNumeric(NumVal) Then

Total = Total + NumVal

End IfFUNCTION DESCRIPTION

IsArray Checks to see if the specified value
is an array.

IsDate Checks to see if the specified value
is a date.

IsNull Checks to see if the specified value
is Null.

IsNumeric Checks to see if the specified value
is numeric.

IsObject Checks to see if the specified value
is an object.

063646-X Ch05.F 10/16/01 2:37 PM Page 79

⁄ At the top of a module,
type Public PubVar As DataType,
replacing PubVar with the
variable and DataType with
the variable’s data type.

Note: For more information on data
types, see Chapter 3.

¤ Create a new subroutine.

� You can type Private in
front of the subroutine so it
does not appear on the
macro list.

‹ Set the value of the
PubVar variable.

› Create another subroutine
in the same module.

ˇ Set the value of the
variable to be the current
value plus a value.

You can declare global variables that all modules in a
project can access. When you talk about where you
can use a variable, you refer to the scope of the

variable. When creating Excel macros in VBA, you can use
variables on three different levels: procedure level, private
module level, and public module level. Of these three
variable types, the private module level and public level are
two different types of global variables.

Available only to other procedures within the same module,
you declare private module-level variables at the top of the
module with the use of the Private keyword. In other words,
they are global within the module, but not available to other
modules in the procedure. If the module only contains one
procedure, declaring a private module-level variable is the
same as a procedure-level variable.

You declare the other type of global variable, public
module-level variables, at the top of a module, which

makes them available globally, or to all modules within the
corresponding procedure. You declare these variables using
the Public keyword.

Keep in mind that you can use the Dim keyword at the
module level to declare variables. When you use the Dim
keyword at the module level, it has the same effect as the
Private keyword and creates a private module-level
variable. Because the Dim keyword is more confusing than
using Public and Private keywords, you typically avoid it
with module-level variables.

Keep in mind, you declare procedure-level variables within
a specific subroutine or function using a Dim statement.
Because you can use them only within the procedure, you
typically refer to the variable as a local variable. Because a
local variable is only valid within that procedure, other
procedures can have variables with the same name, and you
have no conflict.

80

USING GLOBAL VARIABLES

EXCEL PROGRAMMING

USING GLOBAL VARIABLES

063646-X Ch05.F 10/16/01 2:37 PM Page 80

Á Create a third subroutine.

‡ Type Call Sub1, replacing
Sub1 with the first subroutine.

° Type Call Sub2, replacing
Sub2 with the second
subroutine.

· Use the MsgBox function
to display the contents of the
PubVar variable.

Note: See Chapter 7 for more
information on using the Msg
function.

‚ Switch to Excel and run
the macro.

� The message box displays
the contents of the PubVar
variable after being passed
between each subroutine.

USING VARIABLES AND ARRAYS

VBA enables subroutines and functions to call
other subroutines and functions. When you call
another function or subroutine, control passes
from the current procedure to the procedure that
is called. Upon completion of that procedure,
control returns to the next line of code in the
original procedure. You call a procedure using the
Call statement before the procedure name.

Example:
Sub Main_Proc()

Dim LocalVar As Integer
LocalVar=1
Call New_Proc
LocalVar = LocalVar + 1

End Sub

In this example, the Main_Proc subroutine
executes and creates a variable called LocalVar.
The New_Proc subroutine is called. When that
subroutine completes, control returns to the
Main_Proc subroutine and LocalVar is
incremented by one. While the New_Proc
subroutine has control, the LocalVar variable is
not available.

When one subroutine calls other functions and
subroutines, you typically hide those functions and
subroutines so that you cannot seperately call them.
All subroutines that you do not hide display on the
Macro dialog box for the corresponding workbook.
To hide a subroutine or function, place the word
Private before the procedure declaration
statement.

Example:
Private Sub New_Sub()

End Sub

81

5

063646-X Ch05.F 10/16/01 2:37 PM Page 81

⁄ Create a new subroutine.

¤ Type Dim NewArray(1 To N) As
DataType, replacing NewArray
with the name of the new array,
N with the upper bound of the
array, and DataType with the
data type of the array elements.

Note: For more information on
Data Types see Chapter 3.

‹ Initialize the values for
the array elements.

Note: See the section “Assign Values
to Variables” for more information
on initializing variables.

� Each array element is
specified by an index value
in parentheses.

You can declare an array a group of the same type of
data values. You declare an array in the same fashion
as you declare any other variable. Just like other

variables, you declare arrays as either local or global
variable arrays. You specify the scope of an array with either
the Dim, Private, or Public statements. See the section
“Using Global Variables” for more information about setting
the scope of a variable.

You declare arrays to store a group of related data. The
array stores data with the same data type; for example,
integers, strings, and so on. Use of arrays greatly simplifies
your code because you only declare one variable to store
several values. For example, you can declare an array to
store a list of students in a class. Instead of creating a
separate variable for each student, such as student1,
student2, and so on, you can create one array that contains
all student names.

When declaring an array, you can also specify its size,
where size is the number of elements in the array, as in the
example: Dim Students(1 To 50) As String. An
element is an individual data value in the array, such as a
student name. You specify the size of the array by placing
the value in parentheses after the name of the array. In the
example, the Students array has a size of 50 elements with
the lower bound of the array of 1 and the upper bound of
the array of 50.

You refer to each value you add to an array as an array
element. You access elements of the array with an index
value, which represents the desired element of the array. To
access the second element of the Students array, the index
value is 2, as in Students(2), for example.

82

DECLARE AN ARRAY

EXCEL PROGRAMMING

DECLARE AN ARRAY

063646-X Ch05.F 10/16/01 2:37 PM Page 82

› Use the Cells property to
assign the values of the array
to cells in the spreadsheet.

Note: For more information on the
Cells property see Chapter 11.

ˇ Switch to Excel and run
the macro.

� Excel places the values in
the array in the specified cells.

USING VARIABLES AND ARRAYS 5

When you specify the size of an array, you indicate the upper and
lower bounds of the array, or the first and last index value. In the
example, Dim NewArray(1 To 45), the statement creates an
array with 45 elements with the lower bound of the array of 1
and the upper bound of 45. If desired, you can omit the lower
bound value when you declare an array, as in the example Dim
NewArray(45). When you do not specify the lower bound of
the array, VBA assigns a lower bound value of 0. Therefore, the
specified array, NewArray, actually has 46 elements starting with
the first element at 0 and the final element at 45.

If you want to give all the arrays you declare a lower bound
value of 1, you do so by placing the following statement before
any procedures in your module: Option Base 1. With this
statement, you only have to specify the upper bound of the array.
You can specify any number as the lower bounds for the arrays
within the module. Keep the lower bounds in mind when
declaring the array.

83

063646-X Ch05.F 10/16/01 2:37 PM Page 83

⁄ Create a new subroutine. ¤ Type Dim ArrayName(1 To N,
1 To M) As DataType, replacing
ArrayName with the name
of the array, N and M with
the upper bounds of each
dimension, and DataType
with the data type of the
array elements.

‹ Type Dim CellRange As
Range.

› Type Set CellRange =
Range(Cells(1,1), Cells
(3,3)) replacing
Range(Cells(1,1),
Cells (3,3)) with
the range of cells.

� Set the range of cells for the
Range object.

ˇ Type ArrayName(1,1) = Value
replacing ArrayName(1,1)
with the array element
reference and Value with
the value of the first element
of the array.

You can declare a multidimensional array to store
related values within one array. VBA allows you to
create arrays with up to 60 dimensions, although

dealing with arrays that have more than two or three
dimensions can become rather confusing.

Multidimensional arrays provide the ability to store related
values in one location, such as the test score for each
student in the class. The first dimension of the array may
contain the student’s name, and the second dimension may
contain the student’s score.

To help you envision a somewhat overwhelming
multidimensional array, try thinking of a two-dimensional
array as a worksheet, with rows and columns. You access
each element of the array by specifying two different index
values. For example, MultiArray(2,4) accesses the value
whose first dimension index is 2 and whose second
dimension is 4.

As you add a third dimension to an array it gains depth.
Using the worksheet example, you can add a third

dimension to the two-dimensional array to make it
resemble a cube. Accessing an element of the array now
requires three index values, as in the example:
MultiArray(2,4,2).

As with other variables, you use the Dim statement to
declare procedure-level arrays, the Private statement for
arrays available to other procedures within the module and
finally the Public statement for arrays that are accessible
to the entire project.

When you declare a multidimensional array, you need to
indicate the size of each dimension in the array. You do
not have to make the dimensions of the array, as in the
example: Dim MultiArray (1 To 4, 1 To 5, 1
To 3). In this example, the array contains four elements
in the first dimension, five in the second, and three in
the third.

See Chapter 3 for more information on VBA data types.

84

DECLARE A MULTIDIMENSIONAL ARRAY

EXCEL PROGRAMMING

DECLARE A MULTIDIMENSIONAL ARRAY

063646-X Ch05.F 10/16/01 2:37 PM Page 84

Á Assign values to the
remaining array elements.

‡ Type
CellRange.Value=ArrayName,
replacing ArrayName with
the name of the array
containing the values.

� The contents of the array
are assigned to the cells in
the Range object.

° Switch to Excel and run
the new macro.

� The values in the array
appear in cells in the
worksheet.

USING VARIABLES AND ARRAYS 5

You can assign the contents of an array to a series of cells in a
worksheet by using the Value property of the Range object.
When you create a Range object, you can specify the cells that
you want to include in the range by using the Set statement.
As the macro runs, any values that you assign to the Range
object are placed in the corresponding cells in your worksheet.

Example:
Dim CellRange As Range

Set CellRange = Range(Cells(1,1), Cells(3,3))

CellRange.Value = MultiArray

The Set statement assigns the range of cells to the specified
Range object. You specify the range using the Cells property
to determine the starting and ending cells for the desired range.
After you specify the desired range, you assign the contents of
an array to the cells in the range using the Value property.

When you declare a multidimensional
array, all elements of the array have
the same data type. If you plan to use
the array to store different types of
values, such as strings and numeric
values, you must store all values as
variants.

Example:
Dim MultiArray (1 To 4, 1 To 5, 1
To 3) As Variant

85

063646-X Ch05.F 10/16/01 2:37 PM Page 85

⁄ Create a new subroutine. ¤ Type Dim ArrayVar As
Variant, replacing ArrayVar
with the name of the variable
to receive the list of values.

‹ Type ArrayVar =
Array(Value1, Value2,
Value3), replacing
Value1, Value2, and
Value3 with the values
to assign to the array.

By converting a list of common values to an array, you
can access the individual values quickly using one
variable. You can convert a list of values to an array

using a variety of different methods. You assign values
to arrays by referencing the index values of each element.
Arrays use index values to identify each of their elements.
For example, if an array has 10 elements with a lower
bounds of 1, the third element in the array has an index
value of 3. In order to assign a value to an array you need to
specify the index values that correspond to the appropriate
array element. For example, this code assigns a value of 45
to the third array element: SampleArray(3) = 45.

With large arrays, assigning values to each element of the
array using the above statement can become rather
cumbersome. After all, the purpose of using an array is to
simplify your code by storing all related values in one
variable, instead of a series of different variables. For Next
loops work well for adding a series of values to an array.
You simply declare a For Next loop to cycle through the
entire array. See Chapter 6 for more information about
working with For Next loops.

For Next loops work best for adding values either from a
series of cells or when you can increment values equally.
When you have a specific list of values to add to an array,
you can also use the Array function, which enables you to
add a list of values to an array. The function adds values to
the array starting at the lower bounds of the array, the first
element, and then adds consecutively. For example, the
following code adds the values “One”, “Two”, “Three” to the
SampleArray: SampleArray = Array(“One”, “Two”,
“Three”).

You can produce the same results when you specify each
element individually, for example, when you assign a value
to the first element of the array: SampleArray(1) =
“One”.

The biggest disadvantage of the Array function is that you
can only use it with a Variant data type variable. In other
words, you cannot declare the variable to which you assign
the list of values as an array.

86

EXCEL PROGRAMMING

CONVERT A LIST TO AN ARRAY

CONVERT A LIST INTO AN ARRAY

063646-X Ch05.F 10/16/01 2:37 PM Page 86

› Type MsgBox(ArrayVar(N)),
replacing ArrayVar with the
name of the variable and N
with the index of the array
element.

Note: See Chapter 7 for more
information on using the MsgBox
function.

ˇ Switch to Excel and run
the macro.

� The message box shows
the array element specified in
step 4.

USING VARIABLES AND ARRAYS 5

The Array function works well when you specify a number of
items to place in the array. Although all elements you add to
the array are variants, you can have a mixture of different data
types. For example, you can add both strings and numeric
values to the same variable using the Array function.

Because you create dynamic arrays with the Array function,
you can use the Redim statement to change the size of the
array after you create it. You can also use the Array function
again within the same procedure to reassign the values in the
array. See the section “Redimension an Array” for more
information on resizing an array.

The Option Base statement does not change the lower
bounds for arrays you create with the Array function. All
arrays have a lower bounds index value of 0. Therefore, if you
add three items to the array using the Array function, the
upper bounds value is 2. The following code adds three values
to TestArray with the first element having an index value of 0.

Example:
TestArray = Array(“One”, “Two”, “Three”)

MsgBox(TestArray(2))

The message box displays a value of Three because the first
element of the array has an index value of 0.

87

063646-X Ch05.F 10/16/01 2:37 PM Page 87

⁄ Create a new subroutine. ¤ Type Dim ArrayName()
As DataType, replacing
ArrayName with the name
of the array variable and
DataType with the type of
values the array will store.

‹ Type ReDim ArrayName(N),
replacing N with the upper
bounds of the array.

› Specify the values for each
element of the array.

ˇ Use the MsgBox function
to view an element of the
array.

Note: See Chapter 7 for more
information on using the Msg
function.

You can change the size of an array by redimensioning
it using the ReDim statement. You can change the size
of a dynamic array at any time within a procedure.

VBA lets you declare two different types of arrays, fixed-size
and dynamic arrays. When you declare a fixed-size array,
you specify the number of elements in the array. For
example, the following code statement creates a fixed array
with 15 elements: Dim NewArray(15) As Integer.

If you do not know how large to make the array when you
declare it, you can use a dynamic array. A dynamic array
does not have a size until you use the ReDim statement
within your procedure to change the array size. You can use
the Dim statement, without a size to create the array, as in
the example: Dim NewArray() As Integer.

When you are ready, you can use the ReDim statement to
size the array so you can add values. For example, in the
code ReDim NewArray(1 To 15), the array is initially

declared as a dynamic array with an unknown number of
elements. The array is redimensioned to contain 15
elements using the ReDim statement.

VBA does not enable you to redimension a fixed-size array.
If you attempt to change the size of a fixed-size array, you
receive an “Array already dimensioned” error message. If
the array was initially declared as a dynamic array, however,
you can use the ReDim statement multiple times within a
procedure to change the size of an array.

Each time you redimension an array, you destroy the
existing elements in that array. If you want to preserve the
existing values in the array, use the Preserve statement.
For example, the statement ReDim Preserve
NewArray(10) instructs VBA to resize the array to 10
elements and maintain any existing values. If the array has
five values, those values remain the first five values in the
resized array. If the array has 15 values, the first ten values
in the array are maintained.

88

EXCEL PROGRAMMING

REDIMENSION AN ARRAY

REDIMENSION AN ARRAY

063646-X Ch05.F 10/16/01 2:37 PM Page 88

Á Type ReDim Preserve
ArrayName(M), replacing M
with the new upper bounds
for the array.

‡ Use the MsgBox function
to view the same element of
the array.

° Switch to Excel and run
the macro.

� The message boxes display
the values from the array.

USING VARIABLES AND ARRAYS 5

Because you may not always know the size of the
array, VBA provides functions for determining an
array’s upper and lower bounds. When working
with dynamic arrays ,you frequently need to
know the upper and lower bounds of the array
to correctly code your procedure. To find the
upper and lower bounds of an array, VBA
provides the UBound and LBound functions. The
sample code finds the lower and upper bounds
and assigns them to variables.

Example:
UpperBound = UBound(EmployeeArray)

LowerBound = LBound(EmployeeArray)

Each of these functions returns a Long data type
indicating the upper or lower bounds of the
specified array. If the array is multidimensional,
you need to specify the dimension for which you
want the bounds.

Example:
UpperBounds = UBound(MultiArray, 2)

89

063646-X Ch05.F 10/16/01 2:37 PM Page 89

⁄ Create a new module.

¤ Type Type DataType
replacing DataType with
the name of the user-defined
data type.

‹ Declare the data type
components.

› Type End Type.

ˇ Create a new subroutine.

Á Type Dim NewArray(N) As
DataType, replacing NewArray
with the name of the array, N
with the number of elements,
and DataType with the user-
defined data type name you
used in step 2.

� Typically you create an
array using the new data
type.

You can create user-defined data types to deal with
specific types of data. User-defined data types
resemble multidimensional arrays in that you can

store related values using one variable name. However,
because you construct it from other data types, you can
create a user-defined data type containing multiple data
types, while all elements in the array must contain the same
data type.

You declare user-defined data types at the top of your
module in the same location as your public and private
module variables. You specify a user-defined data type with
the Type and End Type statements. The Type statement
indicates the start of the user-defined data type definition,
and the End Type statement specifies the end. After the
Type statement, you indicate the name of the new data
type; for example, Type ItemInfo creates a data type
called ItemInfo. To create a user-defined data type to
store an item price and description you can specify a user-
defined data type with two components.

After you create the data type, you can declare variables
that use the specified data type. You typically use user-
defined data types as the data type for an array. For
example, to create an array of the ItemInfo data type, you
type: Dim NewItems(10) As ItemInfo

To assign values to a user-defined array, you not only
specify the array element, but you also indicate the
component you want to change. For example, this code
changes the value of the first component in the array:
NewItems(1).ItemDescription = “15” Monitor”

Similiarly, you can copy the entire contents of one element
to another by simply referring to the array element. The
following code copies ItemDescription and ItemPrice
of the first element of the array to the third array element:
NewItems(3) = NewItems(1)

90

EXCEL PROGRAMMING

CREATE A USER-DEFINED DATA TYPE

CREATE A USER-DEFINED DATA TYPE

063646-X Ch05.F 10/16/01 2:37 PM Page 90

‡ Specify the values for
each element of the array.

� You can specify a
component value by typing
NewArray(N).ComponentName.

° Copy the contents of one
array element to another array
element.

� The user-defined data type
is created.

USING VARIABLES AND ARRAYS 5

As you develop macros using VBA, the
complexity of your code may make it difficult
to keep track of different variables. To simplify
the process, many developers use a standard
naming convention where the variable name
reflect the variable type. To use this type of
naming convention, you preface each variable
name with a standard lowercase prefix that
identifies the data type of the variable. For
example, you can identify an integer variable by
prefixing it with i, to create the variable name
iNumVisits. Using the integer prefix makes it
clear at any location in the code that the
variable holds an integer value. This naming
convention is useful if you share your macro
code with other people. The following table
lists the standard variable-naming conventions
for Visual Basic and VBA.

PREFIX DATA TYPE

b Boolean

c or cur Currency

dt Date/Time

d Double

i or int Integer

l or lng Long

obj Object

s or sng Single

str String

u User-defined

v or var Variant

91

063646-X Ch05.F 10/16/01 2:37 PM Page 91

⁄ Create a new subroutine.

Note: See Chapter 3 for information
on creating subroutines.

¤ Type Dim N As Integer,
replacing N with the name of
the variable to use as the
counter for your loop.

‹ Initialize the value of the
counter variable.

› Type Do.

ˇ Type While N < M,
replacing M with the
maximum value for the
counter variable and N with
the variable specified in
step 2.

� Alternately, you can skip
step 5 and perform steps 6
through 8 to place the While
condition at the end of the
loop.

You can execute a task or a series of tasks as long as a
specific condition is true by using the Do While loop
statement in VBA. A Do While loop provides a great

means for repeating a series of statements. For example, a
Do While loop lets you apply changes to a series of cells
as long as the cells contain a numeric value.

When you use the Do While loop, the statements
specified between the Do and Loop statements execute as
long as the condition is true. As soon as the looping
structure determines that the condition is no longer true,
control moves to the next statement outside the loop.

The Do While loop consists of four basic parts. The Do
statement initiates the loop. You can locate the While

condition statement following the Do statement, or at the
end of the loop. The body of the loop contains a series of
statements to perform as long as the condition is true. Finally,
the Loop statement marks the end of the loop.

When you locate the While condition following the Do
statement, the Do Loop verifies that the condition is true
before executing. If the condition is not true, the loop does
not execute. With this form of the Do Loop, the loop may
never execute.

When you locate the While condition at the end of the
loop, the Do Loop always executes once and then checks
the condition. If the condition evaluates false at that point,
the Do Loop stops execution, and control passes to the next
VBA statement in your macro.

EXECUTE A TASK WHILE
A CONDITION IS TRUE

EXCEL PROGRAMMING

92

EXECUTE A TASK WHILE A CONDITION IS TRUE

073646-X Ch06.F 10/16/01 2:37 PM Page 92

Á Type the body of the loop.

‡ Type N = N + 1 to
increment the counter
variable.

° Type Loop to mark the end
of the Do While loop.

� If you skipped step 5,
type While N < M to specify
the condition of the loop,
replacing M with the
maximum value for the
counter variable and N
with the variable specified in
step 2.

· Switch to Excel and run
the macro.

Note: To learn how to run a macro,
see Chapter 1.

� The body of the macro
repeats until the maximum
counter value is met.

ADDING CONTROL STATEMENTS 6
Because the body of the loop typically contains at least one statement that affects
the results of the loop, you can use incremental statements, such as counter
variables, within the body of a loop to change the condition of the loop. A counter
variable has a specific constant added to it each time the loop executes. Typically,
you declare a counter variable as an integer data type and initialize it with a start
value outside the loop. Within the loop, you increment the variable by a constant
value.

In the following example, the macro assigns the counter variable J an initial value
of 1. The Do While loop verifies that it is less than 5, and then executes the loop.
The loop assigns a value of 1 to the first cell on the worksheet, cell A1. The counter
variable J increments to 2 and the loop retests the condition. The looping continues
until the condition is false. In this instance, the loop repeats only four times. When
J has a value of 5, the looping stops.

Example:
Dim J As Integer

J = 1

Do While J < 5

ActiveSheet.Rows(J).Cells(1).Value = J

J = J + 1

Loop

93

073646-X Ch06.F 10/16/01 2:37 PM Page 93

⁄ Create a new subroutine.

¤ Type Dim N As Integer,
replacing N with the name of
the variable to increment in
the loop.

‹ Initialize the value of the
variable.

› Type Do.

ˇ Type the Until condition,
followed by the condition of
the loop.

� Alternately, you can skip
step 5 and perform steps 6
through 9 to place the Until
condition at the end of the
loop.

� In this example, the loop
repeats until it encounters an
empty cell.

You can execute a task or a series of tasks until a
specific condition is met by using the Do Until loop
statement in VBA. A Do Until loop provides a great

means for repeating a series of statements. For example, a
Do Until loop lets you apply changes to a series of cells
until you encounter an empty cell.

When you use the Do Until loop, the statements you
specify between the Do and Loop statements execute until
the specified condition is met. As soon as the looping
structure determines that the condition is true, control
moves to the next statement outside the loop.

The Do Until loop consists of four basic parts. The Do
statement initiates the loop. The Until condition
statement typically follows the Do statement, although you
can also specify the Until condition at the end of the loop.

The body of the loop contains a series of statements that
perform until the value of the statement meets the
condition of the loop . Finally, the Loop statement marks
the end of the loop.

When the Until condition follows the Do statement, the
Do Until loop checks to see if the condition is true before
executing. If the condition is not true, the loop executes.
With this form of the Do Until loop, the loop may never
execute if the statement meets the condition of the loop
before the loop executes the first time.

When you place the Until condition at the end of the
loop, the Do Until loop always executes once and then
checks the condition. If the condition is true at that point,
the Do Until loop stops execution, and control passes to
the next VBA statement in your macro.

PERFORM MULTIPLE TASKS
UNTIL A CONDITION IS MET

EXCEL PROGRAMMING

94

PERFORM MULTIPLE TASKS UNTIL A CONDITION IS MET

073646-X Ch06.F 10/16/01 2:37 PM Page 94

Á Specify the body of the
loop.

‡ Increment the variable.

° Type Loop to end the Do
Until loop.

� If you skipped step 5, type
Until followed by the
condition of the loop.

· Switch to Excel and run
the macro.

� The macro repeats until
the specified condition is
true.

ADDING CONTROL STATEMENTS 6
When working with Do While and Do Until loops, you may have
situations where you want to jump out of a loop before executing the
remaining statements in the loop. You can do this by using the Exit Do
statement. You can place an Exit Do statement anywhere within the body
of the loop, which can contain multiple Exit Do statements. When VBA
encounters an Exit Do statement, the control immediately transfers out of
the current loop to the next statement outside the loop.

Typically a conditional statement such as If Then appears before the Exit
Do statement. The conditional statement looks for a condition to meet and
then executes the Exit Do statement. The following code uses an If Then
statement to check a second condition, as indicated. This code continues to
execute as long as Condition1 is true. Each time the loop executes, the If
Then statement checks to see if the value of Condition2 has changed.
When the value of Condition2 is true, the loop exits immediately, and
processing continues with the next statement outside the loop.

Example:
Do While Condition1 = True

If Condition2 = True

Exit Do

End If

Loop

95

073646-X Ch06.F 10/16/01 2:37 PM Page 95

⁄ Create a new subroutine. ¤ Declare the loop variable
and any other variables
needed for the subroutine.

‹ Type For N = 1 To Max,
replacing N with the variable
declared for the For Next
loop and Max with the
maximum value of the loop.

You can use the For Next loop to execute a statement
or a series of statements a specific number of times in
your macro. For example, using a For Next loop lets

you add the values in a specific number of cells.

When you use the For Next loop, the statements you
specify between the For and Next statements execute until
the counter variable reaches the specified maximum value.
As soon as the looping structure determines that the
maximum value is met, control moves to the next statement
outside the loop.

The For Next loop consists of four basic parts. The For
statement initiates the loop. You specify a counter variable
with a initial and maximum value; such as A = 1 To 5.
The inside of the body of the loop consists of a series of

statements that perform until the counter meets the
maximum value of the loop. Finally you mark the end of the
loop with the Next statement.

When the For Next loop starts, it checks to make sure the
value of the counter variable has not met the maximum
value. If the variable is less than the maximum, the loop
executes. The counter variable is a numeric value that is
incremented by 1 each time the loop executes.

The loop continues to execute as long as the Minimum
value is less than the Maximum value specified for the
counter variable. If the Minimum value is initially greater
than the Maximum value, the body of the loop never
executes.

EXECUTE TASKS A SPECIFIC
NUMBER OF TIMES

EXCEL PROGRAMMING

96

EXECUTE TASKS A SPECIFIC NUMBER OF TIMES

073646-X Ch06.F 10/16/01 2:37 PM Page 96

› Type the VBA statements
for the body of the loop.

ˇ Type Next to indicate the
end of the loop.

Á Type any additional code
needed for your subroutine.

‡ Switch to Excel and run
the associated macro.

� The macro executes the
contents of the For Next
loop the specified number of
times.

ADDING CONTROL STATEMENTS 6
You can specify a different value to increment the Counter
variable. By default, the Counter variable for the For Next loop
increments by one each time the loop executes. If you want to
increment or decrement the Counter variable by a different
numeric value, you can use the Step statement and specify the
increment value. If you specify a positive value, the Counter
variable increments by that value each time the loop cycles. If
you specify a negative value, the Counter variable decrements by
that value each time the loop cycles. In the following example,
the For loop starts with an initial counter variable J of 2 and a
maximum value of 20. Each time the loop cycles, the counter
variable increments by 2. The TotalVal variable increments by
the value of the loop. The loop executes ten times. When the
initial and maximum values of the counter are equal, the loop
executes a final time before it passes control to the next
statement outside the loop.

Example:
For J = 2 To 20 Step 2

TotalVal = TotalVal + J

Next

97

073646-X Ch06.F 10/16/01 2:37 PM Page 97

⁄ Create a new subroutine.

¤ Type a Dim statement to
declare an array, N.

‹ Type a Dim statement to
declare the count variable for
the For Next loop.

› Type Dim Element as
Variant, replacing Element
with the variable for the For
Each loop.

ˇ Declare any additional
variables needed by the
subroutine.

Á Type a For Next loop to
add values to the array.

Note: For more information on
creating For Next loops, see the
section "Execute Tasks a Specific
Number of Times."

You can use the For Each Next loop to repeat a
series of statements for each element in an array or
each object in a collection. When you use the For

Each Next loop, the statements you specify between the
For and Next statements execute for each element in the
specified array or collection. As soon as the looping
structure finds the last element, control moves to the next
statement outside the loop.

The For Each Next loop consists of four basic parts. The
For Each statement initiates the loop. The statement
Element In Group follows the For Next statement.

The body of the loop contains a series of statements to
perform for each element. Finally, the Next statement
marks the end of the loop.

The Element In Group statement consists of two parts:
Element represents a variable of the same data type as the
items in the array or collection, and Group names the array
or collection. For example, if you want to loop through the
elements of an array you can have the statement For Each
Student In StudentNames.

The For Each loop continues to execute as long as the
specified group contains values. The Element variable
contains a copy of a group element each time the loop
executes, not a reference to the element in the array.
Therefore, changing the Element variable does not modify
the array. For example, when dealing with an array of
student names, Excel copies the name of the student in the
array element to the value specified as the Element.
Because of that, changing the value of the Student
variable does not modify the contents of the array.

USING THE FOR EACH NEXT LOOP

EXCEL PROGRAMMING

98

USING THE FOR EACH NEXT LOOP

073646-X Ch06.F 10/16/01 2:37 PM Page 98

‡ Type For Each Element in
Group, replacing Element
with the variant variable
declared and Group with the
name of the array.

° Type the VBA code to
execute as the body of the
loop.

· Type Next to close the
loop.

‚ Type any additional
statements for the subroutine.

— Switch to Excel and run
the macro.

� The For Each loop
executes for each element in
the specified array.

ADDING CONTROL STATEMENTS 6
You commonly nest loops to populate a multidimensional array. When you
nest loops, you place one loop completely inside another loop. To work
with a multidimensional array, you create a separate loop for each
dimension of the array. The following code uses two nested For Next
loops to access elements of the array. Notice that the inside loop, with the L
counter variable, completely cycles each time the loop with K runs once.
Each Next statement has a variable following it. This code works well when
you nest loops because you can determine which loop ends. Remember,
you must exit the inside loop before you can exit outside loops.

99

TYPE THIS:

Sub Build_Array()
Dim NewArray(1 To 3, 1 To 3) As Integer
Dim K As Integer
Dim L As Integer
For K = 1 To 3

For L = 1 To 3
NewArray (K, L) = K+L

Next L
Next K
End Sub

RESULT:

The code creates a two-dimensional
array with values as outlined in the
following table:

2 3 4

3 4 5

4 5 6

073646-X Ch06.F 10/16/01 2:37 PM Page 99

⁄ Create a new subroutine. ¤ Type If Condition Then,
replacing Condition with
the statement to check.

‹ Type the statements to
execute if condition is true.

› Type Else.

ˇ Type the statements to
execute if the condition
is false.

You can conditionally execute a group of statements by
using the If Then conditional statement. The If
Then conditional statement checks to see if a specific

condition is true and, if so, executes all statements between
the Then keyword and the End If statement. For
example, you can use the If Then statement to make sure
variables contain a numeric value before summing.

The If Then conditional statement always consists of
three different parts. The If keyword always initiates the
If Then conditional statement. A condition always
follows, such as A = 5, followed by the keyword Then. The
body contains the statements to execute if the specified
condition is true. Finally, the End If statement indicates
the end of the conditional statement.

The statements you specify between the If Then and End
If statements only execute if the condition is true. If the

condition is false, your macro ignores the statements. The
If Then statement also enables you to specify a group of
statements to execute only if the condition is false, by using
the Else statement.

You can nest If Then statements together to check
multiple conditions. Nesting the statements together means
that you place one If Then statement inside of another.
For example, you can check the value of a cell to make sure
it is numeric and that it contains a number greater than 0.
You can accomplish this with nested If Then statements.

With nested If Then statements, the first If Then
statement must be True, or your macro never sees the
condition specified by the second If Then statement.

CONDITIONALLY EXECUTE
A GROUP OF STATEMENTS

EXCEL PROGRAMMING

100

CONDITIONALLY EXECUTE A GROUP OF STATEMENTS

073646-X Ch06.F 10/16/01 2:37 PM Page 100

Á Type End If. ‡ Switch to Excel and run
the associated macro.

� The If Then statement
checks the condition and
executes the appropriate
statements based upon the
results.

ADDING CONTROL STATEMENTS 6

Although VBA does not require you to
indent your code, you can use indentation
to improve readability. Indenting enables
you to more easily look at the layout of the
code without reading each line. When
dealing with conditional statements, such
as If Then statements and looping
statements, most programmers typically
indent the code within these statements
for readability. The following example
shows how you can indent the code body
of a For Next loop to let people easily
locate the loop’s beginning and end. The
example also indents the If Then
statement body code to show its location.

Example:
For I = 1 To 5

If J < 10 Then

J = J + 1

End If

Next

101

If you have an If Then statement
that consists of only one body
statement, you can combine the If
Then statement with the body
statement and eliminate the End
If statement.

TYPE THIS:

If Sum <10 Then Sum = Sum + 1
'This is equivalent to typing the following:
If Sum < 10 Then

Sum = Sum + 1
End If

RESULT:

The code adds 1 to the sum as long as the
sum is less than 10.

073646-X Ch06.F 10/16/01 2:37 PM Page 101

⁄ Create a new subroutine.

¤ Declare any variables
needed for the subroutine.

‹ Initialize variables.

� You can type a loop to
pass values to subroutine.

� In this example, Do
While Not
(IsEmpty(Cells(R,2)))
loops through values in
column B as long as they are
not empty.

› Type Select Case
Expression, replacing
Expression with the
expression to check for
values.

ˇ Type Case Value1,
replacing Value1 with the
first value to check for the
specified expression.

Á Type the code statements
to execute if expression
equals specified value.

You can create code to execute a specific block of
code based upon the value of a statement using the
Select Case statement. The Select Case

statement is similar to specifying multiple If Then
statements to check the value of the same expression. The
Select Case statement works well if you have different
conditions to execute based upon the value of a variable,
such as determining in which state a user lives in order to
calculate sales tax. For example, if you want to execute a
different statement depending upon which value a user
selects, you can either use multiple If Then statements to
check the value of the response, or you can use one
Select Case statement.

The Select Case statement is best suited for situations
where you need to check one expression for several
different values. The Select Case statement consists of
four different parts. The Select Case statement includes

the expression you want to check. For example, if you
determine the value of the UserVal variable, your initial
statement is Select Case UserVal. Each Case
statement indicates a value for the expression. For example,
Case 4 determines if UserVal = 4 is True. Under each
Case statement are statements to execute if the expression
equals the specified value. Finally, the End Select
statement specifies the end of the Select Case
statement.

When the Select Case statement finds a match to the
value of the expression, the corresponding statements
execute and exits the Select Case statement. You can
also add a Case Else statement that tells the statement to
run if none of the other Case statements are valid. For
example, you can add a Case Else statement that
executes if the value of UserVal is not one of the Case
statement values.

EXECUTE A STATEMENT BASED
UPON THE VALUE

EXCEL PROGRAMMING

102

EXECUTE A SPECIFIC STATEMENT BASED UPON THE VALUE

073646-X Ch06.F 10/16/01 2:37 PM Page 102

‡ Repeat steps 5 and 6 for
each expected value of the
expression.

° Type Case Else.

· Type the code statements
to execute for all other values
of the expression.

‚ Type End Select.

— Switch to Excel and run
the associated macro.

� The macro checks the
values of the specified
expression.

ADDING CONTROL STATEMENTS 6
With the Select Case statement, you can
specify comparison statements, a range
of values, or check for multiple values.

103

TYPE THIS:

Select Case State
Case “TX”, “CA”
Total = Total * 1.085
End Select

RESULT:

If the value of State equals TX or CA the total is
calculated using 8.5% for the sales tax.

TYPE THIS:

Select Case NumStudents
Case Is <10
MsgBox(“Not enough students enrolled”)
End Select

RESULT:

The Select Case statement displays the message
box if the value of NumStudents is less than 10.

TYPE THIS:

Select Case NumSales
Case 1 To 5
Commission = Total * .05
Case 6 To 15
Commission = Total * .1
End Select

RESULT:

The Select Case statement checks the value of
NumSales to see whether it falls into one of the two
specified ranges to calculate the commission rate.

073646-X Ch06.F 10/16/01 2:37 PM Page 103

⁄ Create a new subroutine. ¤ Type the code that
determines when the GoTo
statement is needed.

‹ Type GoTo Label,
replacing Label with the
name of the subprocedure to
which you want to jump.

› Type additional code for
procedure.

You can jump to a named location within your macro
using the GoTo command. In order to use a GoTo
statement, you need to have a label within your

procedure that the GoTo statement can reference. The label
is just a text string followed by a colon. The GoTo command
references that label and passes control from the current
location in the procedure to the labeled section.

GoTo commands date back to the days when you
performed programming on mainframe computers and
each line of code had a specific line number. The GoTo
command jumped directly to the specified line of code.
Now, you only use GoTo commands in situations where
you cannot obtain the desired results using other
conditional statements and loopings structures. Although
you frequently use the command for trapping errors in VBA,
the hardcore programming community considers using the
GoTo command too frequently bad programming. See
Chapter 8 for more information on debugging your
macro code.

The GoTo command actually consists of two pieces: The
GoTo statement and the name of the source label, which
follows the statement. You can place the label anywhere in
the code of your procedure. Excel often references the
labeled area of code as a subprocedure.

The GoTo command can only jump to subprocedures
within the same procedure. It cannot reference a
subprocedure you place outside the current procedure,
even if they both are in the same module. For example, if
you have the code GoTo ChangeValue, somewhere else
within the same procedure you need to have a
ChangeValue statement. When Excel encounters the GoTo
ChangeValue statement, it jumps from that location to the
statements that follow the ChangeValue statement.

You can add multiple GoTo commands to the same
procedure. Each GoTo command can jump to the same
labeled command, or to separate commands.

JUMP TO A SPECIFIC LOCATION IN A MACRO

EXCEL PROGRAMMING

104

JUMP TO A SPECIFIC LOCATION IN A MACRO

073646-X Ch06.F 10/16/01 2:37 PM Page 104

ˇ Type Label followed by a
colon (:); replacing Label
with the name you typed in
step 3.

Á Type statements to
execute when label is called.

‡ Type Exit Sub to exit
procedure after running
statements.

° Switch to Excel and run
the macro.

� The appropriate GoTo
statement executes.

ADDING CONTROL STATEMENTS 6
You place labels within the code of a procedure to mark the subprocedure code.
Other than signalling to the GoTo statement the location of the code to run, Excel
ignores the label. Labeling the code does not change how it executes. Code
within a loop or conditional statement executes only when a condition is met.
Labeled code executes when the GoTo statement jumps to it, or when control
passes to that area of the code.

If you have multiple areas of labeled code you may not want it all to execute. To
avoid execution of code that follows a labeled section, you can either use another
GoTo statement or an Exit Sub statement to terminate the current subroutine.

The following example uses the Exit Sub command before the label
subprocedure to avoid execution of the T =50 statement. If the GoTo command
jumps to the IncreaseValue labeled subprocedure, the T = T * 5 statement
does not execute.

Example:
Sub TestGoTo()

Dim T As Integer

T = Cells(1,1)

If T < 5 Then GoTo IncreaseValue

T = T * 5

Exit Sub

IncreaseValue:

T = 50

End Sub

105

073646-X Ch06.F 10/16/01 2:37 PM Page 105

⁄ Create a new subroutine.

¤ Declare and initialize any
variables for the subroutine.

‹ Type code required to
determine when to jump to
another macro.

› Type If Condition Then,
replacing Condition with
the condition to check.

ˇ Type Call NewProc(),
replacing NewProc() with
the name of the procedure to
call.

Á Type Exit Sub.

‡ Type any additional VBA
commands required for
subroutine.

You can conditionally move out of any location in a
subroutine to run another subroutine or function. You
can accomplish this by using a conditional VBA

statement, such as an If Then statement, and combining it
with a procedure call statement. When you combine the
Call statement with a conditional statement, the other
procedure is only called if the condition is met.

When you use this type of structure, the If Then
statement checks the specified condition. If the value of the
condition is true, the control passes to the specified
subroutine or function. After the subroutine completes
processing, control returns to the next line of code in the
original subroutine. If you do not want to continue
processing the first subroutine after calling the second, you
need to use an Exit Sub statement at that point to exit the
subroutine without running any other statements.

When VBA encounters an Exit Sub statement, it stops
processing of the subroutine, and does not process any VBA
statements that follow the statement. Remember to place
the Exit Sub statement directly after the Call statement
to ensure that VBA immediately exits the subroutine after
control returns from the other procedure.

Keep in mind, you can only use the Call statement to call
another subroutine or function within the same project.
VBA does not provide a method for calling subroutines and
functions that exist in other projects. To access functions
and subroutines that exist in other projects, you must copy
the modules that contain them and insert the copies in your
current project. You can copy a module using the Project
Explorer window. See Chapter 2 for more information
about working with the Project Explorer window.

CONDITIONALLY CALL A SUBROUTINE

EXCEL PROGRAMMING

106

CONDITIONALLY CALL A SUBROUTINE

073646-X Ch06.F 10/16/01 2:37 PM Page 106

° Create another new
subroutine.

· Type code to run when
the subroutine is called.

‚ Switch to Excel and run
the macro.

� When condition is met,
the If Then statement calls
the other subroutine.

ADDING CONTROL STATEMENTS 6

You can place an entire If Then statement on
one line in VBA to create cleaner code. When
you do this, VBA does not require the End If
statement. You can only use one line for an If
Then statement if you only have one statement
to execute when the condition is true. For
example, you can type the following code in just
one line:

THIS CODE
If A>B Then

MsgBox(“A is larger”)

End If

IS EQUIVALENT TO
If A > B Then MsgBox(“A is larger”)

Although using the Call keyword eliminates any
potential confusion by indicating that an outside
function or subroutine is being called, you do not
need to specify the Call keyword when you call
another procedure, subroutine or function. When
you use the Call keyword, you must enclose any
arguments passed in parentheses. Conversely, if
you call a procedure without the Call statement,
you must omit the parentheses around the
argument list.

THIS CODE
Call NewProc(Var1, Var2).

IS EQUIVALENT TO
NewProc Var1, Var2.

107

073646-X Ch06.F 10/16/01 2:37 PM Page 107

⁄ Create a new subroutine.

Note: See Chapter 3 for information
on creating subroutines.

¤ Type Dim WSVar As
Datatype, replacing WSVar
with a variable to contain
results of the function call
and Datatype with the
data type.

‹ Declare any additional
variables for the subroutine.

› Initialize values of
variables.

ˇ Type WSVar =
Application.WorksheetFunction
replacing WSVar with the
name of the variable.

You can add almost all of the Excel worksheet
functions to your VBA code. VBA provides a very
limited number of built-in functions. By using the

various functions available within Excel, you can add
functionality that is not available with the existing VBA
functions. For example, Excel provides several different
financial functions that you can use within your macros.

To place an Excel worksheet function in your VBA
subroutine or function, you use the WorksheetFunction
property along with the name of the function.

One of the properties available for the Application object,
the WorksheetFunction property is part of the Excel
Object Model that VBA uses to access features of Excel.
The Application object refers to the actual Excel program.
The WorksheetFunction object stores all of the Excel
Worksheet functions. To access one of the functions in
the WorksheetFunction object, you use the

WorksheetFunction property and precede the name
of the function with the statement: Application.
WorksheetFunction. The function follows with any
arguments required by the function enclosed in
parentheses. For example, the code Application.
WorksheetFunction.Max(Num1, Num2, Num3,
Num4), uses the Max Excel worksheet function to compare
the values in four different variables to determine which
variable contains the largest value. See Chapter 4 for more
information on the Excel Object Model.

You cannot call Excel worksheet functions that have
equivalent VBA functions. For example, both VBA and Excel
have functions called Cos that return a numeric value that
represents the cosine of an angle. If you try to use the Excel
worksheet function Cos in your VBA procedure you receive
an error message stating “Object doesn’t support this
property or method.” This message displays indicating that
Excel does not recognize the function call.

USING EXCEL WORKSHEET FUNCTIONS

EXCEL PROGRAMMING

108

USING EXCEL WORKSHEET FUNCTIONS

083646-X Ch07.F 10/16/01 2:37 PM Page 108

Á Type
.FunctionName(arguments),
replacing FunctionName
with the Excel function and
corresponding arguments
within the parentheses.

� As you type the argument
list, Microsoft IntelliType
displays a list of required
arguments for the function.

‡ Type additional code
required to display the results
of the Excel function.

° Switch to Excel and run
the macro.

Note: See Chapter 1 for more on
running a macro.

� The Excel worksheet
function returns the
appropriate results.

USING BUILT-IN FUNCTIONS AND STATEMENTS 7

You can use the built-in Excel functions to add functionality to your
Excel macros. VBA provides a limited number of built-in functions for
use within the subroutines and functions you create. Because of this,
it is not unusual to use the Excel worksheet functions within your VBA
procedures. On the other hand, Excel provides an enormous number
of functions for doing everything from performing statistical
calculations to manipulating text. Even if you are an avid Excel user,
you may find the sheer number of functions that Excel provides
somewhat intimidating.

The Object Browser lists the functions that are part of the
WorksheetFunction object. You can use these Excel worksheet
functions within your VBA function or subroutine. You can view this
list using WorksheetFunction as the search criteria. See Chapter 4 for
more information on the Object Browser.

If you do not know the purpose of a particular Excel function, you can
view the Insert Function dialog box in Excel, which displays when you
click Insert➪Function. The Insert Function dialog box lists all of the
available Excel functions. When you click a function, a short
description of the function appears under the function list.

109

083646-X Ch07.F 10/16/01 2:37 PM Page 109

⁄ Create a new subroutine. ¤ Type Dim MsgVar As
Integer, replacing MsgVar
with the variable to receive
the MsgBox return value.

‹ Declare other variables
needed for the subroutine.

› Type MsgVar =
MsgBox(“Text Prompt”, buttons,
“Text Title”), replacing “Text
Prompt” with the prompt
for the message box, buttons
with the button constant, and
“Text Title” with the title
for the message box.

� You can type + to separate
multiple button constant
values.

You can use the MsgBox function to display pop-up
message boxes when a VBA procedure executes. The
MsgBox function does two things: It displays a dialog

box to provide information to the user and it returns a value
that indicates the response from the user. You capture the
user response by assigning the results of the MsgBox
function to a variable. For example, the code
UserResponse = MsgBox(“Do you want to
continue?”) assigns a value between 1 and 7 indicating
the user response to the UserResponse variable. For
example, if the user clicks OK, the MsgBox function returns
a constant value of vbOK or 1.

The MsgBox function has five different arguments: Prompt,
Buttons, Title, Helpfile, and Context. All but the first
argument are optional.

The Prompt argument indicates the value that displays in
the message box. You can make this argument a text string

and enclose it in quotes or use a variable. You can combine
values by using the concatenation operator (&), as in the
example: MsgBox(“Total Sum: “ & TotalSum)

The optional Buttons argument enables you to specify a
constant value indicating the buttons and icons to display
on the message box. If you do not specify a button
constant, the MsgBox function uses the default vbOKOnly
that displays only the OK button.

The optional Title argument contains the text that
displays on the title bar of the message box. If you omit this
argument, Excel displays a default value of Microsoft
Excel.

The final two optional arguments are available for adding
help to the message box. The Helpfile argument specifies
the name of the help file and the Context argument
specifies the context ID of the help topic to display.

USING THE MSGBOX FUNCTION

EXCEL PROGRAMMING

110

USING THE MSGBOX FUNCTION

083646-X Ch07.F 10/16/01 2:37 PM Page 110

ˇ Type a conditional
statement to test the value
returned from the MsgBox
function.

� In this example, the If
Then statement determines
if a value of 6 or 7 returns.

Á Type additional code for
subroutine.

� You can type & to join
the text string with a variable
value.

‡ Switch to Excel and run
the macro.

� The message box displays
and the macro processes the
value of the button pressed.

USING BUILT-IN FUNCTIONS AND STATEMENTS 7

You can use twenty different
constant values as the
Buttons value for the MsgBox
function. You can use these
values separately, or combine
them by adding an addition
sign (+) between each constant
value. For example, the
following code creates a
message box containing Yes,
No, and Cancel buttons as well
as the Warning Query icon. For
a list of the constants that you
can use for the Buttons
argument, refer to Appendix A.

Example:
MsgBox(“Select button”,
vbYesNoCancel + vbQuestion)

The MsgBox function returns an integer value between 1 and 7, that
indicates which button the user selects. You can determine this
selected button with the value that the MsgBox function returns,
either by looking at the integer value, or by using the constant value
that represents the button. The following table shows the integer
values returned by the MsgBox function and the equivalent constant
value.

111

MSGBOX RETURN VALUE CONSTANT DESCRIPTION

1 vbOK OK button pressed

2 vbCancel Cancel button pressed

3 vbAbort Abort button pressed

4 vbRetry Retry button pressed

5 vbIgnore Ignore button pressed

6 vbYes Yes button pressed

7 vbNo No button pressed

083646-X Ch07.F 10/16/01 2:37 PM Page 111

⁄ Create a new subroutine.

¤ Type Dim UserInput As
Variant, replacing UserInput
with the variable to receive
value from the InputBox
function.

‹ Declare and initialize
any other variables for the
subroutine.

› Type the initial VBA code.

� The example uses a Do
While loop to request values
from a user until Done is
typed.

ˇ Type UserInput =
InputBox(“Text Prompt”)
replacing “TextPrompt”
with the text to display on
the Input Box.

� You can type & to join
the text string with a variable
value.

You can use the InputBox function to prompt for
specific user input during the execution of a
procedure. The InputBox function displays a dialog

box requesting specific input and returns the user response.
You capture the user response by assigning the results of
the InputBox function to a variable.

The InputBox has seven different arguments, but only the
first is required: Prompt, Title, Default, xPos, yPos,
Helpfile, and Context.

The Prompt argument indicates the user prompt on the
dialog box. You can make this argument either a text string
enclosed in quotes, or a variable. You can combine values
using the concatenation operator (&), as in this example,
UR = InputBox(“Sum:” & TSum).

The optional Title argument contains the text that
displays on the title bar of the dialog box. If omitted, Excel

displays a default value of Microsoft Excel. The
optional Default argument specifies the default value to
display in the text box on the dialog box.

You specify the display position of the dialog box using the
optional arguments xPos and yPos. If you omit them, the
dialog box displays in the center of the screen. These
arguments use units of measurement called twips. One twip
equals 1⁄20 of a point or 1⁄1,440 of an inch. The xPos argument
indicates the distance from the left side of the screen to the
left side of the dialog box. The yPos indicates the position
from the top of the screen to the top of the dialog box.

You use the final two optional arguments for adding help
capability to the dialog box. The Helpfile argument
specifies the name of the help file and the Context
argument specifies the context ID of the help topic to
display. If you specify one argument, you must specify both.

USING THE INPUTBOX FUNCTION

EXCEL PROGRAMMING

112

USING THE INPUTBOX FUNCTION

083646-X Ch07.F 10/16/01 2:37 PM Page 112

Á Type additional code to
process the value returned
from the InputBox function.

‡ Switch to Excel and run
the associated macro.

� The InputBox function
requests specific input from
the user.

USING BUILT-IN FUNCTIONS AND STATEMENTS 7

You can use named arguments to simplify your function calls. When
you work with built-in VBA functions, you see that many of the
functions have optional arguments. For example, although the
InputBox has seven different arguments, only the first one is
required. If you want to include any additional arguments, you need
to specify the argument values in order, leaving a placeholder for any
you do not want to use.

Example:
UserInput = InputBox(“Type a value”, , “test”)

Instead of specifying a placeholder for each value, VBA enables you
to use named arguments with the built-in procedures. With a named
argument, you specify the name of the argument along with the
corresponding value. To specify a named argument, you type the
name of the argument followed by a colon, an equals sign, and the
value of that particular argument. You can place named arguments in
any order, and you do not have to specify a value for every
argument.

Example:
UserInput = InputBox(prompt:=“Type a value.”, default:=“5”)

113

083646-X Ch07.F 10/16/01 2:37 PM Page 113

⁄ Create a new subroutine. ¤ Type MsgBox (“Current
date: ” & Date).

‹ Switch to Excel and run
the macro.

� The current system date
displays in the message box.

� You can modify the date
setting by clicking Start ➪
Settings ➪ Control Panel ➪
Regional Options.

VBA gives you the ability to retrieve the current date
and time information from your system using some of
its built-in functions. VBA includes several date-

related built-in functions that you can add to subroutines
and functions that you create. You use these functions to
return a system date or time, perform date calculations, set
a date, and even time a specific process.

If you want to include the current date and time
information, you can select from three different functions.
The Date function returns the current system date, the
Time function returns the current system time, and the Now
function returns both the date and time.

VBA formats the date and time information to match your
system’s short date format. You can modify the date and
time settings via the Start menu.

When working with dates, you can avoid displaying a date
outside of a range by remembering the date range that
Excel accepts. VBA accommodates a much larger date range
than Excel by accepting dates between January 1, 100, and
December 31, 9999. Excel for Windows, however, only
accepts dates between January 1, 1990, and December 31,
9999. If you happen to use Excel on a Macintosh, the date
range is even smaller with the acceptable dates being
January 1, 1904, to December 31, 9999. Hopefully none of
these date limits pose any issues for you as you work with
dates in the macros your create. If you need to display dates
outside the range, you can do so by placing the date in a
string variable.

You can assign the results of the Date or Time function to
another variable, a worksheet cell, or another function, such
as the MsgBox function, as in this example:
MsgBox(“Current Date and Time: “ & Now()).

RETRIEVE CURRENT DATE AND TIME

EXCEL PROGRAMMING

114

RETRIEVE CURRENT DATE

083646-X Ch07.F 10/16/01 2:37 PM Page 114

⁄ Create a new subroutine.

¤ Type Cells(1, 1) = “Current
Time: ” & Time() replacing
Cells(1, 1) with the
location for the time and
“Current Time” with
the text string to display.

‹ Switch to Excel and run
the macro.

� The current system time
displays in the first cell.

� You can modify the time
setting by clicking Start ➪
Settings ➪ Control Panel ➪
Regional Options.

USING BUILT-IN FUNCTIONS AND STATEMENTS 7

VBA uses the same serial number system for
dates and times as Excel, which stores each date
as a numeric value. You can express each date
and time as a sequential number starting at 0. You
can express the date portion of the number as
the integer portion of the number and the time
portion of the date as a decimal value between 0
and 0.99999999 representing times from 0:00:00
(12:00 Midnight) to 23:59:99 (11:59:99 PM).
Because Excel stores dates and times as numeric
values, you can easily manipulate them by adding
and subtracting them.

Excel uses the Western calendar to determine the
number of days in each month and which month
is the first month of the year. Using this calendar,
the first month of the year, January, has 31 days
and the second month has 28 days with the
exception of years divisible by 4, which have 29
days. All other months have 31 or 30 days. One
exception to the leap year rule, century years must
be divisible by 400 to be a leap year; therefore
2000 is a leap year, but 3000 is not.

115

RETRIEVE CURRENT TIME

083646-X Ch07.F 10/16/01 2:37 PM Page 115

⁄ Create a new subroutine.

¤ Type Dim Date1 As Variant,
replacing Date1 with the
variable for the first date.

‹ Type Dim Date2 As Variant,
replacing Date2 with the
variable for the second date.

› Declare and initialize
other variables for the
subroutine.

ˇ Type initial VBA code.

Á Type Date1 = datevalue1,
replacing Date1 with the
variable in step 2 and
datevalue1 with the
first date.

‡ Type Date2 = datevalue2,
replacing Date2 with the
variable in step 3 and
datevalue2 with the
second date.

You can determine the amount of time between two
different dates by using the DateDiff function. With
this function you can return almost any time interval

between the specified date values, such as months, days,
hours, minutes, or even seconds.

The DateDiff function has five different arguments of
which the first three are required: Interval, Date1,
Date2, Firstdayofweek, and Firstweekofyear.

You can use the Interval argument to express, in units of
time, the difference between the two dates. There are ten
different values that you can specify for this argument.

The Date1 and Date2 arguments specify the two dates you
want to compare. You can use a date string, the value
returned by a function, or the contents of a cell, as long as it
is a valid date. To ensure the date is valid, consider using the
IsDate function to check the date.

You can utilize the optional Firstdayofweek argument if
you want to use a day other than Sunday as the first day of
the week. To specify a constant value for this argument, you
simply include vb before the appropriate day of the week.
For example, to use Monday as the first day of the week,
you specify vbMonday as the value of the argument. See
Appendix A for Firstdayofweek constant values.

Finally, you can use the optional Firstweekofyear
argument to indicate what you want to treat as the first
week of the year. If you omit this argument, VBA considers
the first week that contains the date January 1 as the first
week of the year, even if it falls on Saturday. For example, If
you want to have the first week containing at least four days
of January, you specify a value of vbFirstFourDays. See
Appendix A for Firstweekofyear constant values.

DETERMINE THE AMOUNT
OF TIME BETWEEN DATES

EXCEL PROGRAMMING

116

DETERMINE THE AMOUNT OF TIME BETWEEN DATES

083646-X Ch07.F 10/16/01 2:37 PM Page 116

° To verify that both dates
are valid, type If IsDate(Date1)
And IsDate(Date2) Then
replacing Date1 and Date2
with the date variables.

· Type Diff = DateDiff(interval,
Date1, Date2), replacing Diff
with the variable to receive
the results of the function
and Date1 and Date2
with the date variables.

‚ Type the remaining
VBA code.

— Switch to Excel and run
the associated macro.

� The DateDiff function
compares the specified date
and returns an interval value.

USING BUILT-IN FUNCTIONS AND STATEMENTS 7
You can use one of ten different constant values to specify the
Interval argument and the type of date interval to return.

117

INTERVAL VALUE DESCRIPTION

yyyy year Only compares the year portion of both dates. 12/31/1999 and 1/1/2000
return a value of 1 year.

q Quarter Divides year into four quarters and returns number of quarters between
dates.

m Month Only compares the month portion of both dates. 12/31/1999 and 1/1/2000
return a value of 1 month.

y Day of Year Same results as using d.

d Day Number of days between two dates.

w Weekday Determines the day of the week of the first date, for instance, Wednesday,
and then counts the number of Wednesdays between the dates.

ww Week Relies on the value specified as the firstdayofweek argument to
determine the number of weeks between two dates.

h Hour If a time is not specified, uses midnight or 00:00:00.

n Minute Number of minutes between two times.

s Second Number of seconds between two times.

083646-X Ch07.F 10/16/01 2:37 PM Page 117

⁄ Create a new subroutine. ¤ Type the Dim statement
to define variables for the
subroutine.

‹ Type DateVar = DateExp,
replacing DateVar with
the variable to hold the
date expression specified
by DateExp.

� The example assigns
date values from the
corresponding worksheet.

You can custom format an expression using a specific
date or time with the FormatDateTime function.
Doing so returns a Variant data type value with the

specified formatting. See Chapter 3 for more information
on data types.

The FormatDateTime function uses two different
arguments, of which only the first argument is required:
Date, and NamedFormat. The Date argument identifies
the date expression that you want to format and accepts
cell references, variable references, string expressions, or
numeric values. If you reference a cell, the cell must have
default formatting. In other words, the cell must have
Default, and not Date, or some other formatting value,
when you view the formatting.

You can reference a cell using any of the cell range
reference options discussed in Chapter 11. For example, if
the date you want to format is located in cell A1 you can

type the following code using the Cells property to
reference that cell: FormatDateTime(Cells(1,1)).

The NamedFormat argument specifies the formatting of the
expression. You can use one of the predefined formatting
constants. If you omit the NamedFormat argument the
FormatDateTime function uses the vbGeneralDate
constant as the default value. The vbGeneral constant
instructs Excel to format the date expression with the
system date settings and formats the time portion with the
system long time settings.

Windows maintains your default date and time settings on
the Regional Options dialog box, which you can access
through the Start menu. When you use a constant with the
NamedFormat argument, you specify the combination of
these settings that you want for formatting your date and
time values. By changing the values on this dialog box, you
affect how the dates and times display when you use the
FormatDateTime function.

FORMAT A DATE EXPRESSION

EXCEL PROGRAMMING

118

FORMAT A DATE EXPRESSION

083646-X Ch07.F 10/16/01 2:37 PM Page 118

› Type DateVar2 =
FormatDateTime(DateVar,
vbformat), replacing
DateVar2 with the result and
vbformat with the constant
that indicates desired format.

ˇ Type the remaining VBA
code.

Á Switch to Excel and run
the associated macro.

� The macro runs and
reformats each of the
specified date expressions.

USING BUILT-IN FUNCTIONS AND STATEMENTS 7

You can specify the formatting of
the specified date and time with
NamedFormat argument. If
omitted, Excel uses the
vbGeneralDate constant. When
you use the NamedFormat
argument, you can pass it either
the constant value or the numeric
value that corresponds to the
constant, as outlined in the
following table. Keep in mind, the
actual formats used as a result of
specifying these constant values
are based upon the system date
and time settings on the Regional
Options dialog box. You display
the Regional Options dialog box
by clicking Start➪Settings➪
Control➪Regional Options. You
can then select the corresponding
tab, either Date or Time.

CONSTANT VALUE DESCRIPTION

vbGeneralDate 0 Default value if
NamedFormat argument is
omitted. Displays the date
using the system short date
format and the time using the
system long time format.

vbLongDate 1 Displays the date using the
system long date format.

vbShortDate 2 Displays the date using the
system short date format.

vbLongTime 3 Displays the time using the
system time format.

vbShortTime 4 Displays the time using a 24-
hour clock format commonly
referred to as Military time.
For example, 6:00 p.m.
formats as 18:00.

119

083646-X Ch07.F 10/16/01 2:37 PM Page 119

⁄ Create a new subroutine. ¤ Type Dim NumberVar As
Variant, replacing NumberVar
with a variable for use with a
number format function.

‹ Type NumberVar =
FormatNumber(123, 2,
vbUseDefault, vbUseDefault,
vbTrue), replacing the first
two arguments with the
number to convert and
number of decimal places.

You can custom format a numeric expression so that it
displays with specific formatting by using either the
FormatNumber, FormatCurrency, or

FormatPercentage functions. These functions all take a
numeric value and return a formatted number based
upon the values you specify for each argument. The
FormatNumber function returns a formatted number,
whereas the FormatCurrency function returns a
number that begins with a currency symbol, and the
FormatPercentage function returns a number followed
by a percentage sign.

Each of these functions have the same five arguments with
the first being required: Expression,
NumDigitsAfterDecimal, IncludeLeadingDigit,
UseParensForNegativeNumbers, and GroupDigits.

Expression, the first argument, specifies the numeric
value to format. The NumDigitsAfterDecimal argument
indicates the number of decimal places to display on the
right side of the decimal. The IncludeLeadingDigit
argument determines whether a zero displays before the
decimal for numbers between -1 and 1. The

UseParensForNegativeNumbers argument
specifies whether to place parentheses around negative
numbers. Finally, the GroupDigits argument determines
how Excel groups numbers to make them more readable.
For example, with this argument, you express fifty thousand
as 50,000.

The last three arguments, IncludeLeadingDigit,
UseParensForNegativeNumbers, and GroupDigits, all
use the same three constant values. Use vbTrue as the
value of the argument to perform the corresponding
formatting. Use vbFalse if you do not want that type of
formatting. If you do not specify a value, or specify
vbUseDefault, the function utilizes the corresponding
value from your computer’s regional settings.

Windows stores all default settings for you system on the
Regional Options dialog box. You can modify these settings
at anytime, but modifications affect all Windows
applications. You can view and modify your regional settings
by selecting them via the Regional Options dialog box. To
access this dialog box, see the section “Format a Date
Expression.”

FORMAT A NUMERIC EXPRESSION

EXCEL PROGRAMMING

120

FORMAT A NUMERIC EXPRESSION

083646-X Ch07.F 10/16/01 2:37 PM Page 120

› Type the remaining VBA
code to work with the
formatted number.

ˇ Switch to Excel and run
the associated macro.

� The macro runs and
reformats the number using
the specified formatting
function.

USING BUILT-IN FUNCTIONS AND STATEMENTS 7
If you want to further customize the way a number displays,
you use the Format function. You can create your own
number formats by combining specific characters along with
symbols that represent the numbers, for example:
Format(NumVal, “##.##”)

NUMERIC CHARACTERS DISPLAYS

0 A numeric digit or a zero if the number does not have a digit in that place.
Use this character to ensure that a digit appears in a specific place. For
example, 0000 always displays a four-digit number. If there are fewer digits,
a zero displays for the non-specified digits.

A numeric digit if the number has a digit in that place. If there is no digit, a
value does not display in that place.

. Decimal point placeholder.

% An expression as a percentage by multiplying by 100 and adding a
percent sign.

, Thousands separator.

E-, E+, e-, e+ Numeric expression in scientific format. The number of digits on the right
side of the symbol indicates the number of digits in the exponent.

\ or “ “ The character that follows that backslash or enclosed in quotes. For
example, to place a plus sign (+) in the number string you would type \+ in
the desired location.

121

083646-X Ch07.F 10/16/01 2:37 PM Page 121

⁄ Create a new subroutine.

¤ Type Dim StringVar As
String, replacing StringVar
with the variable containing
the string.

‹ Declare other variables
needed for the subroutine.

› Assign the string
expression to StringVar.

You can remove excess spaces from the front or the
end of a specific string using one of the built-in trim
functions in VBA. Extra spacing at the beginning or

end of strings can affect the way the string displays. You
have three different functions for trimming excess spacing.
The RTrim function removes the excess spacing at the end
of the string. The LTrim function removes the excess
spacing at the beginning of the string. If you want to
remove the extra spaces from both ends of a string
simultaneously, you can use the Trim function.

Each function requires just one argument: the string
containing the excess spacing. Typically, you pass the string
to the function as the value of a variable or the contents of
a cell in a worksheet. For example, LTrim(LongString)
trims the excess spacing at the beginning of a string.

When you call any one of these functions, the function
returns a Null value if the value of the string expression
passed to the function is Null.

Each function returns a Variant data type with a subtype
of String. See Chapter 3 for more information on data
types in VBA. If you want the function to return a String
data type value, you need to place the String type
declaration symbol, a dollar sign, at the end of the function.
When you use the dollar sign at the end of the function to
return a String value, make sure the variable to which you
assign the results is declared as a string.

None of these functions remove excess spacing within a
string. For example, Trim(“ This is a
sample string “) removes the spacing only before
the word This and after string. The extra spacing within
the string remains untouched.

REMOVE EXTRA SPACING FROM A STRING

EXCEL PROGRAMMING

122

REMOVE EXTRA SPACING FROM A STRING

083646-X Ch07.F 10/16/01 2:37 PM Page 122

ˇ Type Result =
Trim$(StringVar), replacing
StringVar with the variable
to receive the trimmed string.

Á Type additional VBA
code.

‡ Switch to Excel and run
the associated macro.

� The Trim function
removes the excess spaces at
the beginning and end of the
string.

USING BUILT-IN FUNCTIONS AND STATEMENTS 7

Many of the built-in functions in VBA return a Variant
data type value. Good for simplifying code because their
data types can handle any type of data, Variants still are
not as efficient as Strings, which require less memory to
store than Variants. For this reason, you can modify most
of the built-in VBA functions that return a Variant to return
a String data type by simply adding a dollar sign symbol
($) to the end of the function name. You can use the dollar
sign with the following functions:

CHR CHRB CURDIR

Date Dir Error

Input InputB Lcase

Left LeftB Ltrim

Mid MidB Oct

Right RightB Rtrim

Space Str String

Time Trim UCase

123

083646-X Ch07.F 10/16/01 2:37 PM Page 123

USING THE LEFT/RIGHT
FUNCTION

⁄ Create a new subroutine.

¤ Type Dim StringVar As
String, replacing StringVar
with the string variable.

‹ Type StringVar = “String”
replacing “String” with the
string to assign to the variable.

› Type Result = Left(StringVar,
#), replacing Result with the
shortened string and # with
the number of characters.

� To return characters from
the right side of the string,
you can replace Left with
Right.

ˇ Switch to Excel and run
the associated macro.

� The function returns the
shortened string.

Instead of an entire string, you can use the built-in
functions available in VBA to return only a portion of a
string. These functions work well when you only want a

smaller portion of a string. You can use three different
functions to return a portion of a string. The Left function
returns the specified number of characters starting at the
left side, or beginning, of the string. The Right function
returns the specified number of characters starting at the
right side, or end of the string. Each of these functions have
the same two required arguments: Left(string,
length) and Right(string, length).

The string argument specifies the string from which you
want to return the specified number of characters. You can
make the argument an actual string enclosed in quotes, a
variable that contains a string, or a cell reference. The
length argument indicates the number of characters to
return from the string.

The third built-in function for returning a portion of a string
is the Mid function. This function works well for retrieving
characters from the center of a string. When you use this
function you indicate the first character with which to start
and how many characters to return. There are three
different arguments for the Mid function: Mid(string,
start, length).

Similiar to the Left and Right functions, the Mid function
string argument specifies the string to use with the
function. The start argument indicates the position of the
first character in the string to return. The length argument
is the only optional argument with the Mid function. If you
omit the length argument, the function returns the
remaining portion of the string. Otherwise, the length
argument indicates the number of characters to return.

RETURN A PORTION OF A STRING

EXCEL PROGRAMMING

124

RETURN A PORTION OF A STRING

083646-X Ch07.F 10/16/01 2:37 PM Page 124

USING THE MID FUNCTION

⁄ Create a new subroutine.

¤ Type Dim IB As String,
replacing IB with the string
variable.

‹ Declare additional
variables for the subroutine.

› Type IB = InputBox ("Text")
replacing IB with the variable
in step 2, and "Text" with
the input box text.

ˇ Type Cells(1, 1) = Mid(IB, MS,
NC) replacing Cells(1, 1)
with the result's location, MS
with the start number and NC
with the number of characters.

Á Switch to Excel and run
the associated macro.

� The Mid function returns
the specified number of
characters from the string.

USING BUILT-IN FUNCTIONS AND STATEMENTS 7
With the Mid, Right, and Left functions, you do not always know the length of
the strings and may need to check the string length to determine the number of
characters to return before calling one of these functions. You can determine the
length of a string with the Len function: Len(string), which uses only one
argument, string, to identify the string to check. You can make the string
argument an actual string, or the name of a varaible that contains a string. You
can use a conditional statement along with the Len function to determine the
number of characters to return from a string. The If Then statement in the
following example checks to see if the length of the string is longer than ten
characters. If so, the Right function returns a portion of the string.

Example:
Dim NewStr As String

Dim NewStr2 As String

Dim CharNum As Integer

Dim NewLength As Integer

NewStr = “This is a Sample String”

CharNum = Len(NewStr)

If CharNum > 10 Then

NewStr2 = Right(NewStr, CharNum – 10)

End If

125

083646-X Ch07.F 10/16/01 2:37 PM Page 125

⁄ Type Option Compare Text
at the top of the module.

¤ Create a new subroutine.

‹ Type Dim String1 As String
replacing String1 with the
first string to compare.

› Type Dim String2 As String
replacing String2 with the
second string to compare.

ˇ Assign values to String1
and String2.

You can compare two strings to see if they are alike
using the built-in StrComp function in VBA. When
you compare two strings, the StrComp function

returns a value indicating whether the strings are the same.
If the strings are different, the function returns a value that
shows which string is larger.

The StrComp function has three different arguments, of
which the first two arguments are required: string1,
string2, and compare. The string1 and string2
arguments indicate the strings to compare. You can use a
string enclosed in quotes, a string variable, or a reference to
a cell containing a string as the argument value.

An optional constant value, the compare argument,
determines how the function compares the strings. If you
omit the argument, the function uses a binary comparison
of the strings, or the comparsion specified by the Option
Compare statement. The vbBinaryCompare constant

indicates that you want to compare the strings based upon
the ANSI character code for each character in the string. On
an ANSI character chart, lowercase letters have a larger
value than uppercase characters.

Use the vbTextCompare constant if you want to compare
strings based upon the actual text, regardless of the case.
With this comparison, the StrComp function sees an M and
m as the same character.

You can use the vbUseCompareOption to indicate that
you want to use the type of comparison specified by the
Option Compare statement. If the statement does not
exist, a binary comparison is performed.

The StrComp function returns a value of 0 if the strings are
the same. If the first string is larger, it returns 1. If the
second string is larger, the function returns -1. If either
string is Null, the function returns Null.

COMPARE TWO STRINGS

EXCEL PROGRAMMING

126

COMPARE TWO STRINGS

083646-X Ch07.F 10/16/01 2:37 PM Page 126

Á Type If StrComp(String1,
String2) = 0 Then, replacing
String1 and String2 with
the strings in steps 3 and 4.

‡ Type VBA statements to
perform if strings match.

° Type VBA statements to
perform if strings do not
match.

· Switch to Excel and run
the macro.

� The StrComp function
compares the two strings
and returns a value.

USING BUILT-IN FUNCTIONS AND STATEMENTS 7

When comparing strings, the StrComp function treats
upper and lowercase characters differently for a binary
comparison. In other words, the StrComp function
considers a J and j the same. If you want to compare
strings to see if they contain the same characters, you
must convert the strings to the same case — either
all uppercase or all lowercase — before making the
comparison. VBA provides two built-in functions that
you can use to convert strings. The UCase function,
UCase(string), converts the lowercase characters
in a string to uppercase. The LCase function,
LCase(string), converts all uppercase characters in
the string to lowercase. Both functions ignore numbers
and symbols in the string and require one argument to
convert the string. You can make the string argument an
actual string enclosed in quotes, or a reference to a string
such as a variable name. If the string contains a Null
value, the function returns a value of Null.

You can place the
Option Compare
statement at the top of
a module to indicate the
type of comparison to
make between strings.
To perform a binary
comparison of all
strings, type:
Option Compare Binary

If you want to compare
all strings as text, type:
Option Compare Text

127

083646-X Ch07.F 10/16/01 2:37 PM Page 127

No matter how adept you are at writing VBA code,
sooner or later you encounter an error when running
your macro. Not all errors are the result of bad code;

you may, for example, encounter errors because the
procedure may anticipate a different data type. Whatever
the cause of the error, you need to determine the source of
the error and how to resolve the issue. The process of
finding errors is referred to as debugging.

As you work with the Visual Basic Editor, you can encounter
design, compile, runtime, and logical errors. Although you

normally fix design-time errors immediately upon the
creation of the procedure, compile and runtime errors do
not show up until the procedure executes, and may require
some debugging to locate. The most difficult errors for you
to locate typically consist of logical error, because you only
know that you did not receive the anticipated results.
Because logical errors do not produce an error message,
you have to rely on debugging options to trace through
your code and determine the error location.

DEBUGGING BASICS

EXCEL PROGRAMMING

128

COMPILE ERRORS

If you have done any other programming, you know
that compiling is the process of converting or
translating your VBA code into a format that your
computer can understand. With other programming
languages, you compile a program before you run it.
With VBA and Excel, the compile occurs automatically
each time you run a procedure. This is true whether

you run the procedure within the Visual Basic Editor or
you select the corresponding macro in Excel. Because
this process occurs so quickly, you are typically
unaware that a compile even occurs.

If any errors occur during the compile process, an error
message box pops up, and the Visual Basic Editor
highlights the location of the error.

DESIGN ERRORS

Predominantly created when you write your code,
most design errors consist of syntax errors that occur
when you mistype a statement. You create design
errors when you omit an argument for a function, or
forget to use parentheses. The code MsgBox
(“Sample Text”, for example, produces a syntax
error due to the omission of the closing parenthesis.

As long as you use the Code Settings of the Visual Basic
Editor, you immediately know when a syntax error

occurs in your code. The Options dialog box includes
an Auto Syntax Check option that instructs the Visual
Basic Editor to check the syntax of each line of code
that you type. If the Visual Basic Editor encounters an
error, a Syntax Error message box displays immediately,
highlighting the error and indicating what you need to
correct it. You should always have this option selected.
For more concerning the Visual Basic Editor, see
Chapter 2.

093646-X Ch08.F 10/16/01 2:37 PM Page 128

129

DEBUGGING MACROS 8

RUNTIME ERRORS

You encounter runtime errors as your code executes.
As with the other types of errors, when the Visual Basic
Editor encounters an error, a message box displays with
a description of the error. Also, when the Editor
encounters a runtime error, if you have not placed any
error handling in the code, execution of the procedure
stops.

You typically receive errors when you pass invalid data
to your procedure, such as when you pass the wrong
data type value to a variable. If you pass a string to an
expression that expects a numeric value, a runtime
error occurs.

To avoid having your code stop due to a runtime error,
you need to use the On Error Resume Next
statement at the beginning of your procedure. The
statement causes VBA to skip over the error and
continue processing the procedure. Although the code
no longer halts abruptly due to an error, the error still
exists, and you need to handle it. VBA places the
information for the error in the Err object. As you
write your code, you should check the Err object to
ensure that runtime errors do not occur. If you
encounter an error, you need to write code to resolve
the error situation as quickly as possible.

The VBA Object Model includes the Err object that
captures information about a runtime error. You can
use the properties of the Err object to capture a
runtime error and return a message providing

information on how to resolve the error situation
without abruptly halting the procedure. The following
table lists the three different properties of the Err
object and their descriptions.

ERR OBJECT PROPERTY DESCRIPTION

Description Contains a VBA description
of the runtime error

Number Contains the VBA error
number of the runtime error

Source Indicates the name of the
current procedure that
caused the error

You can create code similar to the following that
executes if VBA encounters an error. This code creates a
message box containing the description of the error
and places the VBA error number in the title bar of the
message box. See Chapter 7 for more information on
working with message boxes. The generated code
appears as follows:

Example
If Err.Number <> 0 Then

MsgBox Err.Description, vbCritical, “Error # “ &
Err.Number

End If

LOGICAL ERRORS

Unlike the other types of errors, logical errors do not
produce any type of error message. Instead a logical
error returns unexpected results. For example, although
the following code is syntactically correct, it has a
logical error in calculating the sales tax. The sales tax
rate is 7.5 percent, but the code is charging 75 percent
because of a misplacement of the decimal point:

Example
Price1 = 4.45

Price2 = 6.95

TotalCost = (Price1 + Price2) * 1.75

Simple logical errors such as mistyping a value or
placing a decimal in the wrong place are sometimes the
most difficult errors to spot. Because logical errors
normally are not obvious, you typically need to use
break points or step throughout the code to find the
location of the error. As you step through your code,
you can monitor the value of each variable to determine
when the value changes to something unexpected. See
the sections “Insert a Break Point in a Procedure”, “Step
Through a Procedure”, and “Using Watch Expressions to
Debug a Procedure” for more information on inserting
a break point and stepping through a macro.

093646-X Ch08.F 10/16/01 2:37 PM Page 129

Num2 = Cells (2, 1)

MSgBox (AverageVal)

⁄ In the Projects window,
open the module containing
the procedure you want to
debug.

Note: See Chapter 2 for information on
opening VBA modules.

¤ Click View ➪ Locals
Window.

� The Locals window
displays in the last viewed
location.

‹ Click in the margin next to
the line of code to add a
break point.

� You can add additional
break points as needed.

You can insert break points in a procedure to stop
execution at the specified line of code. Break points
enable you to quickly debug problems with a

subroutine or function as well as to determine whether a
procedure executes correctly up to the specified location.

You can display the Locals window in the Visual Basic Editor to
view the current values of the local variables. When you debug
your code, consider docking this window to the bottom of the
screen so that you can view the local variables while you
debug. After you set a break point, the procedure executes
until it reaches the specified break point, and Visual Basic
Editor highlights the break point and stops the execution.

The Locals window, which displays in the last opened
location, shows the current values of all local variables at
each break point. If a variable does not have the

appropriate value when you reach a break point, you know
that the coding error occurred prior to the current break
point. See Chapter 2 for more information on using the
Visual Basic Editor windows.

When your procedure stops at a specified break point, VBA
places you in Break mode and stops the execution of the
current procedure. You can continue executing your
procedure until it encounters another break point or end the
procedure. Each time VBA encounters a break point, the
values of the local variables update in the Locals window.

You can set a break point for a code statement in the margins
of the Code window. The Visual Basic Editor inserts a dark
circle next to the code and highlights the line of code based
upon the formatting settings you specify. See Chapter 2 for
more information on setting the display settings for the Code
window.

DEBUG A PROCEDURE WITH
INSERTED BREAK POINTS

EXCEL PROGRAMMING

130

DEBUG A PROCEDURE WITH INSERTED BREAK POINTS

093646-X Ch08.F 10/16/01 2:37 PM Page 130

Num2 = Cells (2, 1)

MSgBox (AverageVal) MSgBox (AverageVal)

› Click the Run
Sub/UserForm button ().

� The values of the locally
declared variables display in
the Locals window.

ˇ Click Run Sub/UserForm
to continue execution of
procedure to the next break
point.

� Click the Reset button
() to stop execution of the
procedure.

DEBUGGING MACROS

Visual Basic Editor has three different modes in
which it operates. In the Design mode, you can
create new VBA procedures. You activate the Run
mode, and thus execute the currently selected
procedure, by clicking the Run Sub/UserForm
button (), or by pressing F5.

VBE places you in the Break mode whenever the
execution of a procedure stops due to a break
point, a Stop statement in the code, a Watch
statement, or when it encounters an error during
execution. Whatever the cause of the break in
execution, the Visual Basic Editor highlights the
line of code that caused the error. To remind you
that the Editor is in Break mode, the word break
appears in the caption of the title bar at the top
of the window. To exit out of Break mode, click
the Reset button ().

You can clear a break point from your code by
simply clicking it with the mouse. You should
remember to clear all break points after you
complete debugging your code.

131

8

093646-X Ch08.F 10/16/01 2:37 PM Page 131

⁄ In the Projects window,
open the module containing
the procedure you want to
debug.

Note: See Chapter 2 for information on
opening VBA modules.

¤ Click View ➪ Watch
Window.

� The Watches window
displays in the last viewed
location.

‹ Click Debug ➪ Add
Watch.

You can use watches to monitor the value of specific
expressions or variables as you step through the VBA
code in a procedure. VBA code watches work well for

debugging code to determine why a variable or expression
does not return the anticipated value. Programmers
commonly refer to this type of error as a logical error.
When you set watches, the Visual Basic Editor displays each
watch along with the value of the specified expression or
variable in the Watches window.

The Watches window, which displays in the same location
as you last viewed it, lists the active watches along with the
current value of the expression or variable being watched. If
the selected procedure is not running or is in break mode,
the expression has a value of <Out of context>. See
Chapter 2 for more information on displaying windows in
the Visual Basic Editor.

You set a watch expression using the Add Watch dialog box,
where you specify the expression that you want to watch in
the Expression field. Typically the expression you specify
checks for the value of a variable to meet specific criteria,
as in the example n > 8.

After you specify the expression to watch, you must select
an option to specify the type of watch to perform. When
you select the Watch Expression option, the value of the
expression displays in the Watches window as the
procedure executes. The value of the expression is always a
Boolean value of true or false to indicate whether the
expression is true. The Break When Value is True option
instructs VBA to break execution of the procedure as soon
as the condition is true, whereas the Break When Value
Changes option breaks the execution of the procedure as
soon as the value of the expression changes from true to
false, or vice versa.

USING WATCH EXPRESSIONS
TO DEBUG A PROCEDURE

EXCEL PROGRAMMING

132

USING WATCH EXPRESSIONS TO DEBUG A PROCEDURE

093646-X Ch08.F 10/16/01 2:37 PM Page 132

� The Add Watch dialog box
displays.

› Type the expression to
watch in the Expression field.

ˇ Click an option for the
desired type of watch („
changes to ´).

Á Click OK to close the
dialog box.

� The Watches window lists
each watch.

‡ Click .

� The value of the watch
expression displays in the
Watches window.

DEBUGGING MACROS

Instead of specifying an expression to watch
using the Add Watch dialog box, you can set
watches on expressions within your code or on
the values of variables using the Quick Watch
dialog box. The Quick Watch option works well
for checking the value of a particular expression
or variable while in Break mode.

To use the Quick Watch option to check the
value of a variable, click next to the variable
name and then press Shift+F9 to display the
Quick Watch dialog box. The Quick Watch dialog
box displays the selected expression and
indicates the value of the expression at the
current break point. If you want to continue to
monitor the variable value, click Add to add the
watch to the Watches window.

When dealing with a specific code expression, such
as X > 5, the value on the Quick Watch dialog box
is either true or false, indicating whether the
expression is valid. For example, if the current value
of X is 6, the expression has a value of true
because 6 is greater than 5.

133

8

093646-X Ch08.F 10/16/01 2:37 PM Page 133

⁄ In the Projects window,
open the module containing
the procedure you want to
debug.

Note: See Chapter 2 for information on
opening VBA modules.

¤ Click View ➪ Watch
Window.

‹ Click View ➪ Locals
Window.

� The Watches and Locals
windows display in the last
viewed location.

› Click Debug ➪ Step Into.

You can debug your procedure by stepping through the
execution of the code one line at a time. Stepping
through the code in this fashion is commonly referred

to as tracing. Unlike break points, which execute the code
until a break is encountered, tracing literally executes a line
and waits for you to indicate that you want to execute the
next line of code. This method of debugging works well for
locating logical errors in your code.

When you step through your code, you can also use
watches to monitor the value of different expressions.
A watch is an expression for which you monitor the value.
As you step through the procedure, the values of the
watches update. You can quickly see at what point in the
procedure your watches are valid. See the section “Using
Watch Expressions to Debug a Procedure” for more
information on creating a watch.

As the code executes, the values of each local variable
display in the Locals window. Make sure the Locals window

displays prior to selecting the option to step through the
code. See Chapter 2 for more information about using the
Locals window.

When you step into the current procedure, the Visual Basic
Editor selects the first line of code in the procedure, the
Sub or Function statement. Continue stepping through
the code using the Step Into option. As you select the
option, the Visual Basic Editor highlights the next line of
code to execute. The Locals window updates the values of
the local variables each time there is a value change. Finally,
the Watches window monitors the values of any watch
expressions created for the procedure.

As you step through a procedure, if a code statement calls
another procedure, the Visual Basic Editor also steps
through the called procedure. After that procedure
executes, the control returns to the original procedure.

STEP THROUGH A PROCEDURE

EXCEL PROGRAMMING

134

STEP THROUGH A PROCEDURE

093646-X Ch08.F 10/16/01 2:37 PM Page 134

� The first line of code in the
procedure is highlighted.

ˇ Press F8 to move to
execute that code and move
to the next line.

Á Continue pressing F8 to
step through the entire
procedure.

� As you step through the
code, local variable values
display in the Locals window
and any watches set display
in the Watches window.

DEBUGGING MACROS

You step into procedures by pressing F8 or by
clicking Debug ➪ Step Into . You can continue
walking through an entire procedure using the
Step Into command. If your procedure contains
calls to other procedures, you can step through
those procedures by using the Step Into
command. If you do not want to step through
those procedures, you can step over them
and continue processing the current one. To
step over the highlighted procedure, click
Debug ➪ Step Over or press Shift+F8. Doing
this instructs the Visual Basic Editor to execute
the entire called procedure without stopping
and to return control to the next line in the
original procedure.

Even if you decide to step through the called
procedure, you still have the option of stepping out
of it at any time. To step out of a called procedure,
click Debug ➪ Step Out or press Ctrl+Shift+F8.
When you select this option, the remainder of the
called procedure executes and then control returns
to the original procedure. Whenever control returns
from a called procedure, the control passes to the
next line of code after the procedure that called the
outside procedure.

135

8

093646-X Ch08.F 10/16/01 2:37 PM Page 135

⁄ Create a new subroutine.

Note: See Chapter 3 for information on
creating subroutines.

¤ Type On Error GoTo Label,
replacing Label with the
label for the code to execute
when an error occurs.

‹ Type the VBA code for the
procedure.

› Type Exit Sub at the end of
the main procedure code.

� The Exit Sub statement
causes the procedure to exit
without running the error
code.

You can instruct VBA to continue execution of a
procedure when it encounters an error using the On
Error Resume Next statement. With this statement,

VBA skips any runtime errors that occur during the
execution of the procedure and execution continues with
the next line of code. By doing this, the procedure
continues executing and an error message does not
inadvertently display on the screen. Keep in mind, that
although the error message no longer displays, an error still
exists in the code and therefore the procedure typically
does not produce the appropriate results.

You should consider placing the On Error Resume Next
statement at the top of all procedures you develop,
especially procedures that you use in macros that you
intend to distribute to another user. The statement ensures
that the macro does not stop abruptly due to an error
encountered in the code. If you adequately code to trap
any potential errors, you can inform the user anytime
conditions exist that would cause an error.

If you want to execute specific code when an error is
encountered, you can modify the On Error statement to
be On Error GoTo Label. With this statement, control
jumps to a labeled section of code within the procedure
whenever an error condition is encountered. Typically this
code is placed at the end of the procedure. You may want
to place an Exit Sub prior to the labeled section to keep
the procedure from executing the code within the label if
an error is not encountered.

For example, you can use ErrCode: as a label for the code
to run if an error is encountered. Notice that the code label
contains a colon. If you add the Resume Next statement at
the end of the code, control returns to the next line of code
in the procedure after the location that produced the
runtime error. Although the runtime error appears to have
been ignored, it is not. The information about the runtime
error is placed in the Err object.

RESUME EXECUTION IF AN
ERROR IS ENCOUNTERED

EXCEL PROGRAMMING

136

RESUME EXECUTION IF AN ERROR IS ENCOUNTERED

093646-X Ch08.F 10/16/01 2:37 PM Page 136

ˇ Type Label:, replacing
Label: with the appropriate
label name for the error-
handling code.

Á Type the VBA code to
execute if an error occurs.

‡ Type Resume Next.

° Switch to Excel and run
the macro.

� If a runtime error is
encountered, the appropriate
VBA code executes.

DEBUGGING MACROS

You can actually use three different forms of the
Resume statement within your code: Resume,
Resume Next, and Resume Label. You
typically place each of these statements at the
end of the error-handling portion of your code
to indicate how to return to the main portion of
the code.

You should use the Resume statement, which
returns to the line of code that originally caused
the runtime error, with caution. If the line of
code executes and produces another error, the
error-handing code calls again. Use this
statement only when you are sure that you
corrected the condition that caused the error.
For example, if you instruct the user to enter a
valid value in a cell, you can resume execution so
that the value is verified again.

The Resume Next statement returns control to the
next line of code after the line that produced the
error, thus continuing execution without that line of
code. This option enables you to complete the
procedure, but typically does not produce the
anticipated results due to the skipped code.

The third form of the Resume statement, the
Resume Label statement, transfers control to
another labeled area of code.

137

8

093646-X Ch08.F 10/16/01 2:37 PM Page 137

⁄ Create a new subroutine.

Note: See Chapter 3 for information on
creating subroutines.

¤ Type On Error GoTo Label,
replacing Label with the
label for the code to execute.

‹ Use the Dim statement to
declare subroutine values.

Note: See Chapter 3 for more
information on declaring variables.

› Type VBA code for
subroutine.

ˇ Type Exit Sub at the end of
the code.

You can use the error code that VBA captures from a
runtime error to make corrections so that the
procedure executes correctly. Whenever VBA

encounters an error during the execution of a procedure, it
places the error information, which includes the error code
and description, in the Err object. You can use this
information to process the error and often correct the error
situation.

To ensure that you capture the error without halting the
execution of your code, place the On Error Resume
Next statement immediately after the Sub statement for
your subroutine. This statement instructs VBA to capture
the error and continue processing.

The Err.Number property contains the error code if a
runtime error occurs. The error codes for runtime messages
are between 1 and 65,535. Essentially, if the Number

property has a value greater than zero, an error occurred.
You can quickly check to see if an error exists by checking
the Number property of the Err object with an If Then
statement as in the following code: If Err.Number >0
Then

The real power of using the Number property comes from
the ability to execute different code based upon the error
message code return by the runtime error. You can design
your error processing code to react differently depending
upon the specific runtime error encountered. For example,
if the Err.Number property has a value of 13, the value
passed to a variable is not the correct data type; for
example, you may have specified a string for a variable that
required an integer value. If you write code that examines
the runtime error, you can prompt for the correct data type.

PROCESS A RUNTIME ERROR

EXCEL PROGRAMMING

138

PROCESS A RUNTIME ERROR

093646-X Ch08.F 10/16/01 2:37 PM Page 138

Á Type Label: replacing
Label: with the appropriate
label name for the error
handling code.

‡ Type a conditional
statement, such as Select
Case, to check the value of
the Err.Number object
property.

° Type code to execute if
specific error occurs.

· Type Resume to return to
the line of code where error
occurred.

‚ Switch to Excel and run
the macro.

� If the value passed to the
subroutine is not valid, the
error processing occurs.

DEBUGGING MACROS

The following table lists some of the most common errors that VBA returns when it encounters a
runtime error. Each error code has a description message you can display using the Err.Description
property, or you can capture the code and display your own custom messages.

139

CODE ERROR DESCRIPTION

3 Return without GoSub. Return statement exists without a corresponding GoSub statement.

5 Invalid procedure call. The call to another subroutine or function cannot be made. Typically due
to a problem with the arguments. Either not calling with a valid number
of arguments, or the value of an argument is not valid for the procedure.

9 Subscript out of range. Attempt was made to access an array element that does not exist.
Commonly occurs when you forget that, unless specified, array indexes
start at zero.

10 The array is fixed or You cannot redimension a fixed length array.
temporarily locked.

11 Division by zero. You cannot divide by zero. If the value of the divisor is zero, this error
occurs.

13 Type mismatch. Typically, this means the value passed to a variable is not the correct
data type.

35 Sub, Function, or Occurs when you attempt to call a subroutine, function, or property
Property not defined. that does not exist.

8

093646-X Ch08.F 10/16/01 2:37 PM Page 139

You can create a procedure to open a workbook in
Excel using the Open method of the Workbooks
collection. Each time you open another workbook,

Excel adds that workbook to the Workbooks collection.
Similar to using the Open command on the File menu,
opening another workbook using the Open method makes
the workbook active.

Sixteen different parameters determine how Excel opens a
workbook. Of these parameters, Excel requires only
FileName. In addition, you only need to use the
FileName, ReadOnly, Password, WriteResPassword,
IgnoreReadOnlyRecommended, and AddToMRU
parameters to open an Excel workbook. In addition, Excel
requires several arguments when you open a text file. For
more on opening text files, see the section “Open a Text
File as a Workbook.”

The FileName argument indicates the name of the
workbook to open. You specify the workbook name
for a workbook located in the same folder as the current
workbook. For a workbook in another folder, you
specify the workbook path as part of the file name:
Workbooks.Open(“C:\Workbooks\Budget.xls”).

You can specify a value of True for the ReadOnly
parameter to open the workbook as read-only. A False
value opens the workbook as editable.

You can use the Password parameter to require users to
enter a password to open a workbook. If you omit the
password, and the workbook requires one, Excel prompts
the user for a password before opening the file. Similar to
the Password parameter, WriteResPassword requires
users to enter a password to write in a workbook.

If you originally save a workbook with the Read-Only
Recommended option selected, each time the
workbook opens, Excel prompts you to open it as
read-only. If you want to open the workbook without
the prompt, you can specify a value of True for the
IgnoreReadOnlyRecommended parameter.

Finally, you specify a value of True for the AddToMRU
parameter if you want Excel to add a workbook to the
recently used files list.

OPEN A WORKBOOK

EXCEL PROGRAMMING

⁄ Create a new subroutine.

Note: See Chapter 3 for information on
creating subroutines.

¤ Type Workbooks.Open.

140

OPEN A WORKBOOK

103646-X Ch09.F 10/16/01 2:38 PM Page 140

You can use several other parameters with the Open
method if you want to open text files in Excel.

141

‹ Type
FileName:=”WorkbookName”,
replacing WorkbookName
with the name and path of
the workbook to open.

� You can type a comma
and a space and then type
optional parameters that you
want to include with the
Open method.

› Switch to Excel and run
the macro.

Note: See Chapter 1 to run a macro.

� The specified workbook
opens as the active workbook.

WORKING WITH OTHER WORKBOOKS AND FILES 9

PARAMETER DESCRIPTION

UpdateLinks Specifies how to handle links within the workbook. Type 0 for no updates, 1 to
update external references, and 2 to update remote references. A value of 3
updates external and remote references.

Format Indicates the delimiter character in the text file to separate data into cells in a
worksheet.

Value Delimiter Value Delimiter
1 Tabs 4 Semicolons
2 Commas 5 Nothing
3 Spaces 6 Delimiter parameter value

Origin Indicates original platform of text files and has three constant values.
xlMacintosh, xlWindows, and xlMSDOS. If omitted, Excel uses the current
operating system.

Delimiter Specifies a delimiter character when the Format parameter has a value of 6.

Editable Type True to view an Excel Add-in or to edit an Excel template.

Notify Use True to add a file that cannot be opened as Read/Write to the notification list.

Converter Index of a file converter to use when opening a file.

Local Use True to save file using the language being used by Excel. False saves the
file using the language used by VBA.

CorruptLoad Indicates method used to retry a corrupt load of a file. xlNormalLoad,
xlRepairFile, and xl<Extra>ctData are the three options.

OpenConflictDocument True opens the local conflict document.

103646-X Ch09.F 10/16/01 2:38 PM Page 141

⁄ Create a new subroutine. ¤ Type Workbooks.OpenText.

You can open a text file within Excel using the
OpenText method of the Workbooks collection.
When you use this method, Excel opens the text file as

a single worksheet within a new workbook. The file remains
a text file, but you can modify it using Excel as the editor.

You can specify how the text file opens using the
parameters associated with the OpenText method. The list
of parameters for this method is pretty extensive, but only
the FileName parameter is actually required to specify the
name of the text file to open.

When you use the FileName parameter, you typically want
the name to include the complete path of the file to ensure
that Excel locates the file. If you place the workbook
activating the macro in a different location than the text
file, Excel cannot locate it.

Because the list of parameters is so extensive with the
OpenText method, you should use named parameters
with the method to eliminate the need to specify all
parameters. With named parameters, you can indicate
the name of each parameter along with the associated
value, for example: Workbooks.OpenText
FileName:=”C:\Excel Files\Sample.txt”,
DataType:+ xlDelimited, Tab:=True.

This code opens the text file using the tab character as the
delimiter. The delimiter is the character that indicates a
separation of data. In this file, the tab indicates that the
data following the tab should be placed in the next cell. As
illustrated, the OpenText method has parameters for the
standard delimiter characters. If you know the delimiter for
the text file, you can specify the delimiter character to
ensure that the text file opens correctly.

OPEN A TEXT FILE AS A WORKBOOK

EXCEL PROGRAMMING

142

OPEN A TEXT FILE AS A WORKBOOK

103646-X Ch09.F 10/16/01 2:38 PM Page 142

‹ Type FileName:=”TextFile”,
replacing TextFile with
the name of the text file.

› Type Tab:=True, followed
by a comma.

ˇ Type Thousands
Separator:=”,”.

� You can type a comma
and a space and then type
optional parameters that you
want to include with the
OpenText method.

Á Switch to Excel and run
the macro.

� The specified text file opens
in a workbook format.

WORKING WITH OTHER WORKBOOKS AND FILES

You can use the following parameters with the OpenText method to open a text file as a workbook.

143

9

PARAMETERS DESCRIPTION

FileName Name and location of the text file.

Origin Use xlMacintosh, xlWindows, or xlIMSDOS to indicate the original file
platform.

StartRow First row to use from the text file.

DataType The type of data in the text file, either xlFixedWidth or xlDelimited.

TextQualifier The character that identifies text. Use xlTextQualifiedDoubleQuote,
xlTextQualifierNone, or xlTextQualifierSingleQuote.

ConsecutiveDelimiter Type True to treat consecutive delimiters as one.

Tab, Semicolon, Comma, Type True if the character is the delimiter.
Space

Other, OtherChar Type True for Other if you specify a different delimiter for OtherChar.

FieldInfo Column number followed by a XlColumnDataType constant (see Appendix
A for constants).

TextVisualLayout Visual layout of the text.

DecimalSeparator, Characters indicating decimal and thousands location.
ThousandsSeparator

TrailingMinusNumbers Character that indicates minus numbers.

Local True saves the file in the Excel language. False saves the file in the VBA language.

103646-X Ch09.F 10/16/01 2:38 PM Page 143

⁄ Create a new subroutine. ¤ Type Dim UserFile As
Variant, replacing UserFile
with the variable to receive
name of file to open.

‹ Type UserFile = Application.
GetOpenFilename().

› Type FileFilter:=”Text Files
(*.txt), *.txt” within the
parentheses to specify type of
file to open.

ˇ Type Title:=”Dialog box
text” within the parentheses,
replacing Dialog box
text with the text for
header of the dialog box.

� You can specify additional
parameter values.

Instead of specifying the file to open in your code, you
can retrieve the name of the file by prompting the user
with an Open dialog box. To display an Open dialog box

from an Excel macro, you use the GetOpenFilename
method.

When you use this method, the file selected in the Open
dialog box does not open when the user clicks OK. The
dialog box passes the name of the file selected back to the
variable that receives the statement assignment. If you want
to open the selected file, you need to use the Open
property.

The GetOpenFilename includes several optional
parameters that you can specify to customize the Open
dialog box. You can use the FileFilter parameter to
allow the user to specify the type of files to open from the
dialog box. You specify the file type by listing a value in
the Files of Type drop-down box of the Open dialog box.

For example, “XML Files (*.xml)” specifies that Excel
should only open XML files. You can specify multiple file
types as long as you separate each one by a comma.

You can use the FilterIndex parameter to indicate the
default file filtering option. Your choice of parameter
depends on what you selected for the FileFilter
parameter. You specify a filter value between 1 and the
number of filters you selected. If you omit this parameter,
VBA uses the first filter specified as the default value.

Use the Title parameter to customize the name of the
dialog box. For example, if you want the dialog box to open
a text file, you can change the title of the dialog box to
“Open Text File”.

If you want to select and open multiple files at once, specify
a value of True for the MultiSelect parameter.

OPEN A FILE REQUESTED BY THE USER

EXCEL PROGRAMMING

144

OPEN A FILE REQUESTED BY THE USER

103646-X Ch09.F 10/16/01 2:38 PM Page 144

Á Type Workbooks.OpenText
Filename:=UserFile to open
the file selected in the Open
dialog box.

Note: See “Open a Text File as a
Workbook” for more information on
using the OpenText method.

‡ Switch to Excel and run
the macro.

� The Text Files dialog
box requests the workbook
to open.

WORKING WITH OTHER WORKBOOKS AND FILES

The FileFilter parameter enables you to
indicate the type of files users can select in the
Open dialog box. If you omit this parameter, by
default, VBA lists all file type that Excel can open.
You limit the file types by specifying the
appropriate file types as values for the parameter.
To use this parameter, you need to include two
different strings for each file type. First indicate
the text description of the filter followed by the
MS-DOS wildcard file specification. For example:
“Text Files (*.text) is the first part of the
filter string. The second part, *.txt, is the MS-
DOS wildcard that the dialog box uses to
determine what types to display. You can specify
any string for the filter description, but you must
include the appropriate MS-DOS wildcard values.
The table lists common file types Excel can open.

FILE TYPE DESCRIPTION

*.txt, *.prn, *.csv Text files

*.xls, *.xlm, *.xl, *.xlc Microsoft Excel files

*.htm Web pages

*.xml XML files

*.odc, *.udl, *.dsn Data sources

*.mdb, *.mde Access databases

*.wk? Lotus files

*.wks Microsoft Works 2.0 Files

*.dbf dBase files

145

9

103646-X Ch09.F 10/16/01 2:38 PM Page 145

⁄ Create a new subroutine. ¤ Type Workbooks(1).SaveAs.,
replacing Workbooks(1)
with the workbook that you
want to save.

� You can also use the Save
method by typing
Workbooks(1).Save and
skipping the other steps.

You can save the currently selected Excel workbook
using either the Save or Save As methods of the
Workbook object. Excel has a different workbook

object for each workbook you open. You can reference a
specific workbook object by name, if you know the name.
For example, the code Workbooks(“Sample.
xls”).Save saves the Sample.xls workbook.

If you do not know the name of the workbook you want to
save, you make the workbook the active workbook in Excel,
and use the ActiveWorkbook property to save the
workbook. For example, the code ActiveWorkbook.Save
saves whichever workbook is currently active in Excel.

If the workbook you want to save contains the macro
currently running, you can use the ThisWorkbook
property: ThisWorkbook.Save. Typically this is the same
as the active workbook, but if you open a new workbook

during the execution of the macro, the active workbook
becomes the new workbook.

To specify how Excel saves the workbook, you need to use
the SaveAs method which has several different parameters
to customize the way the workbook saves: FileName,
FileFormat, Password, WriteResPassword,
ReadOnlyRecommended, CreateBackup, AccessMode,
ConflictResolution, AddToMru, and Local.

Use the FileName parameter to specify the filename and
location where you want to save the workbook. If you omit
this parameter value, Excel uses the filename of the
workbook as the value for the FileName parameter.

You can use the FileFormat parameter to specify the file
format for the saved workbook. You can save the workbook
using any of the file formats Excel supports by listing one of
the XlFileFormat constant values. See Appendix A for a
list of the XlFileFormat constant values.

SAVE A WORKBOOK

EXCEL PROGRAMMING

146

SAVE A WORKBOOK

103646-X Ch09.F 10/16/01 2:38 PM Page 146

‹ Type FileName:=
”NameofFile”, replacing
NameofFile with the name
and path to save the file.

› Type FileFormat:=
xlWorkbookNormal, replacing
xlWorkbookNormal with
the xlFileFormat
constant.

ˇ Type AddToMru:=True.

� You can specify additional
parameter values.

Á Switch to Excel and run
the macro.

� Excel saves the workbook
file using the specified name
and format.

WORKING WITH OTHER WORKBOOKS AND FILES

The SaveAs method has several optional parameters that determine how the file saves.
Remember to use the named parameter option to specify parameter values for the method.

147

9

SAVEAS PARAMETER DESCRIPTION

FileName Indicates the name and location to save the file.

FileFormat Contains an XlFileFormat constant that indicates the format to save file.
See Appendix A for the XlFileFormat constant values.

Password Contains up to a 15-character password required to open file.

WriteResPassword Contains the password for write-restricting the file.

ReadOnlyRecommended Type True to display a message that recommends the file be opened as read-only.

CreateBackup Type True to create backup file.

AccessMode Contains a constant value of xlExclusive, xlNoChange, or xlShared
indicating access mode.

ConflictResolution Contains a constant indicating how to resolve conflicts. A value of
xlUserResolution displays a Conflict Resolution box,
xlLocalSessionChanges accepts local user’s changes, or
xlOtherSessionChanges accepts changes from other users.

AddToMru Type True to add workbook to a list of recently used files.

Local Type True to save files in the Excel language and False to save files in the
VBA language.

103646-X Ch09.F 10/16/01 2:38 PM Page 147

⁄ Create a new subroutine.

¤ Type Dim UserFile As
Variant, replacing UserFile
with the variable to receive
name for saving file.

‹ Type UserFile =
Application.GetSaveAs
Filename().

› Type FileFilter:=“Excel
Workbooks (*.xls), replacing
*.xls within the parentheses
with the type of file to save.

� To save only the Excel
Workbooks, you can type
”Excel Workbook (*.xls), *.xls”.

ˇ Type Title:=“Dialog box
text” within the parentheses,
replacing “Dialog box
text” with the text for
header of the dialog box.

� You can specify additional
parameter values.

SAVE WORKBOOK IN FORMAT
SPECIFIED BY USER

EXCEL PROGRAMMING

148

SAVE WORKBOOK IN FORMAT SPECIFIED BY USER

You can request the name, location, and format for saving
a workbook file from the user of your macro with the
GetSaveAsFilename method. Using this method

displays the Save As dialog box into which the user entered
information for saving the file. The dialog box does not save
the workbook file; instead, Excel returns the user specified
information to the variable assigned to the statement. To
save the file, you use the SaveAs method. See the section
“Save a Workbook” for more information. The
GetSaveAsFilename includes several optional parameters
for customizing the appearance of the Save As dialog box:
InitialFilename, FileFilter, FilterIndex, and
Title.

You use the InitialFilename parameter to suggest a
different name, other than the active workbook default, in
the File name field.

You use the FileFilter parameter to allow only certain
file formats for saving the workbook file. If you omit this
parameter, Excel lists all formats available. If you include this
parameter, you need two different string parts. The first, a
text description of the file format, displays in the Save as
type drop-down list box . The second indicates the MS-
DOS wildcard statement for the file type.

You use the FilterIndex parameter to indicate the
default file filtering option which depends on the options
you specify for the FileFilter parameter. You specify a
filter value listed between 1 and the number of filters. If you
omit this parameter, VBA uses the first filter specified as the
default value. You use the Title parameter to customize
the name of the dialog box.

103646-X Ch09.F 10/16/01 2:38 PM Page 148

Á Type ThisWorkbook.SaveAs
Filename:=UserFile to save the
current workbook with the
specified filename and path.

Note: See the section “Save a
Workbook” for more information
on using the SaveAs method.

‡ Switch to Excel and run
the macro.

� The Save As dialog box
requests the information for
saving the workbook.

WORKING WITH OTHER WORKBOOKS AND FILES

Instead of saving an individual workbook, you
can save the entire workspace. You can use
workspaces, which have a .xlw extension, if you
have multiple workbooks that you need to open
simultaneously. If you save them as a workspace,
you simply need to open that workspace and all
workbooks in the workspace.

To save a workspace, you use the SaveWorkspace
method from the Application object. The
Filename parameter, the required and only
parameter, which you must specify for this
method, contains the filename and location
where Excel stores, the workspace file. For
example, if you type Application.
SaveWorkspace “NewWorkspace” Excel saves
the current workspace, which includes all open
files, with the specified name.

Instead of saving the workbooks into a workspace,
you can save each open workbook, using the Save
method of the Application object and combining
it with a looping statement. The example code
cycles through all currently open workbooks and
saves them one by one. If you have not previously
saved a workbook, Excel prompts you via the
Save As dialog box for a file name and location.

Example:
For Each wb in Application.Workbooks

wb.Save

Next

149

9

103646-X Ch09.F 10/16/01 2:38 PM Page 149

⁄ Create a new subroutine.

¤ Type Dim wb As
Workbook, replacing wb with
the workbook variable.

‹ Type Dim wbOpen As
Boolean, replacing wbOpen
with the variable to track if
file is open.

› Type Dim wbFilename As
String, replacing
wbFilename with the string
containing the name of the
workbook to open.

ˇ Type wbOpen = False.

Á Type wbFilename =
“Budget.xls”, replacing
wbFilename with the
workbook variable and
“Budget.xls” with the
name of the workbook to
open.

‡ Type For Each wb In
Application.Workbooks.

° Type If wb.Name =
wbFilename Then.

· Type wbOpen = True.

You can determine if a workbook is currently open by
viewing the Workbooks Collection, which contains all
of the currently open workbooks in Excel. As a new

workbook opens, it becomes a workbook object and Excel
adds it to the Workbooks collection. Excel stores
workbooks in the collection sequentially with the first
workbook opened being the first workbook in the
collection. If you know the order in which a workbook was
opened, you can access it using the associated index value.

The code MyWorkbook = Workbook(1).Name uses the
Name property to return the name of the first workbook in
the collection to the MyWorkbook variable. The Name
property, a read-only property, enables you to return the
name of a workbook but prohibits you from changing the
workbooks name. To change the name of the workbook,
see the section “Save a Workbook.”

In order to locate the workbook, you look at each
workbook within the Workbooks Collection to determine if
any of them is the workbook of interest. The For Each
Next looping statement enables you to cycle through the
list of workbooks and determine if the list contains the
desired workbook. See Chapter 6 for more information
about using a For Each Next looping statement.

Within the looping structure you need to compare the
name of each workbook with the name of the desired
workbook. For this type of VBA statement, you use an If
Then statement, which enables you to check the value and
execute a series of statements if the specified condition is
True. See Chapter 6 for more information about using the
If Then statement.

DETERMINE IF A WORKBOOK IS OPEN

EXCEL PROGRAMMING

150

DETERMINE IF A WORKBOOK IS OPEN

103646-X Ch09.F 10/16/01 2:38 PM Page 150

‚ Type additional statements
to perform if the workbook is
open.

— Type Next.

± Type If wbOpen = False
Then.

¡ Type statements to perform
if the workbook is not open.

™ Switch to Excel and run
the macro.

� The macro checks to see if
the workbook is open. If not,
the workbook is opened.

WORKING WITH OTHER WORKBOOKS AND FILES

If a workbook is open, you can activate it using
the Activate method of the Workbook object.
When you activate the workbook, it becomes the
currently selected workbook in Excel. The
Activate method has no parameters. You can
use it by specifying the workbook to activate
followed by the method, for example:

Example:
SelectedWorkbook.Activate.

If, when you activate a particular workbook, you
have the workbook open in multiple windows,
the activate statement activates the first window
that contains the specified workbook. For
example, the code Workbooks(“budget.
xls”).Activate activates the first window
which has the window title budget.xls.

When you use Application.Workbooks to return the
collection of open workbooks, it returns all
workbooks, including those that are hidden, but it
does not return any open add-ins. In order to return
a specific add-in you need to reference the add-in
by name. For example, the code Workbooks
(“OpenAddin.xla”).Open opens the specified
add-in file. Remember, just like workbooks, if you do
not specify the path, Excel looks for the workbook in
the current folder. To avoid any problems caused by
Excel not locating the specified file, use the
complete path statement as part of the name. See
Chapter 15 for more information on Add-ins.

151

9

103646-X Ch09.F 10/16/01 2:38 PM Page 151

⁄ Create a new subroutine. ¤ Type Workbooks
(“workbook.xls”).Close,
replacing workbook.xls
with the name of the
workbook to close.

You can close a particular workbook from your macro
using the Close method and including a reference to
the Workbook object that contains the workbook you

want to close. The Workbooks collection contains all of the
currently open workbooks as individual workbook objects.
The Workbooks collection adds the Workbook objects
sequentially in the order you opened them. You reference a
workbook with an index value, the name of the workbook,
the ActiveWorkbook property, or the ThisWorkbook
property.

When you use the ActiveWorkbook or ThisWorkbook
property with the Close method the current workbook
running the macro closes. If you have code after the Close
statement, Excel may ignore it.

There are three different optional parameters that you can
use with the Close method: SaveChanges, Filename,
and RouteWorkbook.

You can use the SaveChanges parameter to save changes
to a workbook as it closes. If you specify a parameter value
of True, the workbook saves as it closes; with a value of
False, however, the workbook closes without Excel saving
it, and you lose any changes you made to the workbook.

You can specify a filename and path if you utilize the
FileName parameter to save the workbook. Keep in mind,
if you specify a value of False for the SaveChanges
parameter, Excel ignores the FileName parameter because
the file is never saved. Excel only saves the workbook if you
have made changes to it.

If you set up the workbook to route, you can use the
RouteWorkbook parameter to route the workbook to the
next recipient on the routing list. Specify a value of True to
route the workbook or a value of False if you do not want
to have the workbook sent to the next recipient.

CLOSE A WORKBOOK

EXCEL PROGRAMMING

152

CLOSE A WORKBOOK

103646-X Ch09.F 10/16/01 2:38 PM Page 152

‹ Type SaveChange:=True. � If desired, specify
additional parameter values.

› Switch to Excel and run
the macro.

� The specified workbook file
is closed. If changes have
been made, the workbook is
saved.

WORKING WITH OTHER WORKBOOKS AND FILES

Using the Close method you can specify that
you want to close all workbooks you have open
in Excel. If the SaveChanges parameter does
not have a value specified, Excel checks each
workbook to ensure that you have saved it since
its last modification. If a workbook contains
modifications, Excel prompts you to save the
workbook.

When you close all workbooks, the workbooks
all close but the application, Excel, remains
running. If you want the Excel application to
close, you can use the Quit method with the
Application object: Application.Quit.

Before closing Excel, the Quit method first closes
the open workbooks. If any of the workbooks
contain current changes, Excel you to save the
changes. If you do not want to save modified
worksheets, and you want to avoid the dialog box
asking you to save changes, you can use the
DisplayAlerts property. This property
determines whether the alert message displays
when Excel closes workbooks, or performe any
other tasks.

Example:
Application.DisplayAlerts = False

153

9

103646-X Ch09.F 10/16/01 2:38 PM Page 153

EXCEL PROGRAMMING

⁄ Create a new subroutine. ¤ Type Dim NewWB As
Workbook, replacing NewWB
with the name of the
workbook variable.

‹ Type Set NewWB =
Workbooks.Add(“filename.
xls”), replacing
filename.xls with the
name of the workbook to use
as the template.154

CREATE A NEW WORKBOOK

You can create a new Excel workbook using the Add
method of the Workbooks Collection. When you
create a new workbook, Excel creates a new

Workbook object and adds it to the Workbooks
Collection. The Add method has one optional
parameter that you can use as shown in the following
code: Workbooks.Add(Template).

You can combine the Template parameter with the Add
method to specify how Excel creates the workbook. You can
use another workbook as the template for the new
workbook or one of the four xlWBATemplate constant
values.

When you use a workbook as the template, Excel copies all
elements of the specified worksheet into the new
workbook including all macros, text, and any settings. Be
sure to specify the complete path of the workbook so that
Excel can locate the file when the macro runs.

The xlWBATemplate has four different constant values
that you can use to create a new workbook containing one
sheet of the type specified with the constant value. Use
xlWBATWorksheet to create a workbook containing one
worksheet. If you want a workbook containing a chart,
specify a constant value of xlWBATChart. To create an
Excel 4.0 macro sheet, use xlWBATExcel4MacroSheet.
Use xlWBATExcel4IntMacroSheet to create an
international macro sheet.

When you use the Add method, without specifying a
template, Excel creates a new workbook with the name
Book1.xls. If a workbook already exists with that name,
Excel assigns a name of Book2.xls. You can customize the
workbook with the different properties of the Workbook
object, such as the Title property, to specify the title for
the workbook. You can change the name of the new
workbook using the SaveAs method. See the section “Save
a Workbook” for more information on the SaveAs method.

CREATE A NEW WORKBOOK

103646-X Ch09.F 10/16/01 2:38 PM Page 154

› Type NewWB.Title = “2001
Budget”, replacing 2001
Budget with the text for the
workbook title bar.

ˇ Type NewWB.SaveAs
“NewFilename.xls”, replacing
NewFilename.xls with the
new name for the workbook.

Á Switch to Excel and run
the macro.

� Excel creates a new
workbook using the specified
template file and saves the
workbook with the specified
name.

155

WORKING WITH OTHER WORKBOOKS AND FILES 9

The Workbook object has several properties to view and
modify the properties of a particular workbook. The
following properties are available for a Workbook object.

PROPERTY DESCRIPTION

ActiveSheet Read-only string indicating the name of the active sheet in the workbook.

FileFormat Read-only value indicating the format of the workbook. Returns an
XlFileFormat constant, see Appendix A.

FullName Read-only string indicating the name and complete path of the workbook.

HasPassword Read-only Boolean value indicating whether the workbook is password protected.

Name Read-only string indicating the name of the workbook.

Password Returns or sets the password string for the open workbook.

Path Read-only value that returns the complete Excel application path.

ProtectStructure Read-only Boolean value indicating whether the order of the sheets in the workbook
are protected. If value is True, you cannot move, delete, or add workbooks.

ReadOnly Read-only Boolean value indicating whether workbook was opened read-only.

ReadOnlyRecommended Read-only Boolean value indicating whether the workbook was saved as read-only.

Saved Contains a Boolean value to indicate whether changes have been made since
workbook was modified.

Title Indicates the title that displays in the Excel title bar for the worksheet.

103646-X Ch09.F 10/16/01 2:38 PM Page 155

⁄ Create a new subroutine. ¤ Type Dim DeleteWb As
String, replacing DeleteWB
with the name of the
workbook variable.

‹ Type additional VBA Code
to determine the name of the
file(s) to delete.

VBA provides the ability to delete a workbook, or any
other file using the Kill statement. You can use this
statement to delete any file, as long as the user has

permission to delete it. The following code illustrates the
use of the Kill statement: Kill(pathname).

The Kill statement requires one argument, the pathname.
The pathname argument is a string referencing the files that
you want to delete. To assure that Excel locates the files, the
pathname argument must include not only the filename but
also the folder and drive specification. If you do not specify
the path, Excel looks for the specified files within the
current directory. Make sure you enclose the path
statement within quotes.

You can specify the name of a single file by typing the
complete filename, including the extension. You can also
remove multiple files at once using the wildcard symbols

supported by VBA to specify multiple characters. You can
use an asterisk (*) to represent multiple characters or a
question mark symbol (?) to specify a single character. For
example, you can remove the entire contents of a folder
using the *.* specification. For example, the statement Kill
(“c:\Excel Files*.*”) matches the string to the files
within the folder. Because *.* matches all filenames, Excel
removes all files within the folder. If you only want to
remove the Excel workbooks within the folder, you use *.xls.

Keep in mind that you cannot delete files that are open. If
you attempt to do so, a Permission Denied error appears
and tells you that you cannot delete the file. You also
cannot delete files that have a read-only property. If you
attempt to delete a read-only file, Excel displays a Path/File
access error message.

DELETE A FILE

EXCEL PROGRAMMING

156

DELETE A FILE

103646-X Ch09.F 10/16/01 2:38 PM Page 156

› Type Kill(DeleteWb). ˇ Switch to Excel and run
the macro.

� Excel removes the
specified files from your
computer.

WORKING WITH OTHER WORKBOOKS AND FILES

You can only use the Kill statement to remove
files; it does not remove folders. To delete a
folder you can use the RmDir statement. The
only argument for the RmDir statement—the
path argument — is not required. If you attempt
to omit the argument, VBA tries to delete the
current folder. The path argument consists of a
string containing the path specifying the folder
location to remove. For example, the code
RmDir(“c:\Excel Files”) removes the
folder on the specified path. The RmDir
statement only removes folders; it does not
remove any files. If the folder you are deleting
contains any files, an error message displays
warning you that Excel cannot remove the folder.

When working with folders, you may need to know
the current path in order to determine which folder
to remove, or whether the folder exists. You can
determine the current folder using the CurDir
function. The CurDir function returns a string
containing the path for the current folder. Typically,
you can assign the value returned by the function to
a variable, as shown in the code CurrentFolder

Example:
= CurDir.

157

9

103646-X Ch09.F 10/16/01 2:38 PM Page 157

⁄ Create a new subroutine.

¤ Type Dim PathInfo As
String, replacing PathInfo
with the file location
variable.

‹ Type With
Application.FileSearch.

› Type .NewSearch.

ˇ Type .FileName =
“Book.xls”, replacing
Book.xls with the name
of the file(s) to locate.

Á Type .LookIn = “C:\”,
replacing C:\ with the path
to search.

‡ Type .SearchSubFolders =
True.

� If you do not want to
search subfolders, you can
specify a value of False for
SearchSubFolders.

° Type If .Execute() > 0 Then.

· Type For i = 1 To
.FoundFiles.Count.

You can use VBA to create a procedure to find specific
files on your computer. By creating this type of
procedure, you can ensure that a specific file exists

before attempting to reference it. This type of coding is
useful for avoiding errrors because it verifies that a file
exists, as well as the file’s exact location.

In order to search for a file on your system, you use the
FileSearch object. This object essentially opens the Excel
Open dialog box and attempts to locate the file based upon
specified methods and property values. The .Filename
property indicates the name of the file for which you want
to search. You can search for one, or a series of files using a
wildcard character. You use an asterisk (*) to represent
multiple characters or a question mark symbol (?) to
specify a single character. For example, you can find all text
files with the *.txt specification.

You stipulate the location where Excel starts the search with
the .LookIn property. You can use the
SearchSubFolders property to indicate whether you
want Excel to look in the subfolders of the location
specified by the .LookIn property.

If Excel locates your file, VBA returns a FoundFile object
containing the matching filenames. You reference the
individual filenames in the FoundFile object using an
index value. VBA adds the filenames to the FoundFile
object in the order that Excel locates them. You can
determine the number of file names in the FoundFile
object using the Count method. Using a For Next looping
statement enables you to cycle through all of the matches
that Excel finds using your search criteria. For example, you
can write your code to open each file that matches the
specified criteria.

FIND A FILE

EXCEL PROGRAMMING

158

FIND A FILE

103646-X Ch09.F 10/16/01 2:38 PM Page 158

‚ Type PathInfo =
FoundFiles(i).

— Type additional VBA code
to execute for each file match.

± Type Next i.

¡ Type Workbooks.Open
Filename:=PathInfo.

™ Switch to Excel and run
the macro.

� If Excel finds the specified
file it is opened.

WORKING WITH OTHER WORKBOOKS AND FILES

You can use different optional properties with the FileSearch object to search
for specific file on a system. The following table lists the most useful properties.

159

9

FILESEARCH PROPERTY DESCRIPTION

FileName Indicates the name of the file to locate during the file search. This value can
be a specific filename or contain the wildcard symbols * and ?.

FileType A MsoFileType constant value indicating the type of files to look for during
the file search. See Appendix A for the available MsoFileType constant values.

FoundFiles Returns a FoundFiles object containing the names of the file matches.

LastModified A MsoLastModified constant value indicating the amount of time since file
was last modified. See Appendix A for the MsoLastModified constant
values.

LookIn Indicates the folder to search.

MatchTextExactly Boolean value used with TextOrProperty property to indicate if only files
containing specified text should be returned.

SearchSubFolders Boolean value indicating whether the subfolders of the folder specified by
the .LookIn property should also be searched.

TextOrProperty A string that sets the word or phrase to search for in the body of the file or
the file’s properties. The string can include the * and ? wildcard symbols.

103646-X Ch09.F 10/16/01 2:38 PM Page 159

You can add a new sheet to a workbook using the Add
method with the Sheets object. You use this method
to add any type of sheet to a workbook, worksheet,

chart sheet, or macro sheet.

The Add method has four optional parameters that specify
where in the workbook to place the sheet, the number
of sheets to add, and the type of sheet to create:
ThisWorkbook.Sheets.Add(Before, After, Count,
Type).

You use the Before parameter, the parameter Excel applies
when you do not specify any parameters, to place the sheet
before the currently active sheet in the workbook. You use
the After parameter to place a worksheet after the active
sheet. You reference a sheet either by the sheet name or
using the Worksheets Collection with an index value, as in
the example: ThisWorkbook.Sheets.Add
Before:=Worksheets(1).

Excel references sheets within a Worksheets Collection
based on the order of the sheets within the workbook from
right to left, with the worksheet on the left being the first
sheet with an index of Worksheet(1).

You can add any number of sheets to a workbook at one
time using the Count parameter. If you do not specify a
value for the Count parameter, Excel adds only one sheet
to the workbook.

By default the Add method creates an Excel worksheet
when it is called. You can also use this method to create
chart or macro sheets. You specify the type of sheet you
want to create using one of the four XLSheetType
constant values. If you specify xlWorksheet, Excel adds
a new worksheet. Use xlChart to create a new chart.
If you want to create a macro sheet you can use
xlExcel4MacroSheet. Use xlExcel4IntMacroSheet
to create an international macro sheet.

ADD A SHEET

160

ADD A SHEET

EXCEL PROGRAMMING

⁄ Create a new subroutine.

Note: See Chapter 3 for information on
creating subroutines.

¤ Type ThisWorkbook.Sheets.Add.

113646-X Ch10.F 10/16/01 2:38 PM Page 160

When you use the Before and After
parameters to specify the location in the
workbook where you want to place the new
sheets, you can use multiple methods. If you
know you want Excel to add the sheets before
the first sheet in the workbook, or after the last
sheet, you can easily do so by referencing an
element of the Worksheets Collection. Because
Excel adds sheets to the Worksheets Collection
in the order they exist in the workbook, Excel
always makes the first sheet in the workbook the
first element of the Worksheets Collection, and
references it as Worksheets(1). Because you
do not always know how many sheets are in a
workbook, you can use the Count method with
the Worksheets object to determine the last
sheet in the workbook by typing
Worksheets.Count.

You can also reference a specific sheet by name. For
example, by default Excel names all worksheets as
Sheet1, Sheet2, and so on. If you want to place
the new sheets before Sheet1, you can type the
following for the Before parameter:
Before:=Sheet1.

Alternately, you can add the sheet before the active
sheet in the workbook. To do this you use the
ActiveSheet property. This option is useful
because no matter what sheet you select, Excel
adds the new sheets before or after that specific
sheet.

WORKING WITH WORKSHEETS 10

161

‹ Type Before:=
Worksheets(1), replacing
Before with either Before
or After, and
Worksheets(1) with the
sheet in front of which you
want to place the new sheets.

› Type Count:=2, replacing
2 with the number of sheet
you want to add.

ˇ Type Type:=xlWorksheet,
replacing xlWorksheet
with the constant indicating
the type of sheet to create.

Á Switch to Excel and run
the macro.

� Excel adds the specified
number of sheets to the
workbook.

113646-X Ch10.F 10/16/01 2:38 PM Page 161

⁄ Create a new subroutine. ¤ Type Dim DeleteWS As
String, replacing DeleteWS
with the variable name of the
sheet to delete.

‹ Assign the name of the
sheet to remove from the
workbook to the DeleteWS
variable.

� This example uses the
InputBox function to
request the sheet name from
the user.

You can delete or remove any sheet from a workbook
as long as you have the ability to modify it. If you
open the workbook in read-only mode or if another

user has protected the workbook, you cannot make any
modifications to the workbook, including the removal of
sheets.

You can delete a sheet using the Delete method with the
Sheets object. This combination enables you to remove
any type of sheet from the workbook, including
worksheets, chart sheets, and macro sheets. To use this
method, you must identify the sheet you want to remove,
as illustrated in the following code, which removes the first
worksheet in the workbook: Sheets(1).Delete.

Although Excel numbers sheets and charts as you add them
to the workbook (for example, Sheet1, Sheet2, or Chart1,
Chart2, and so on), it does not necessarily reference sheets

in numeric order. If you use a numeric index value to
specify the first sheet in a workbook, Excel considers the
first sheet to be the one with the tab in the bottom left
corner. If you move sheets within the workbook, Excel
reorders them within the Sheets object.

You can also reference the sheet you want to delete using
the sheet name. If you specify a sheet name, you must
enclose the name of the sheet in double quotes, for
example: Sheets(“Sheet3”).Delete.

No matter what method you use, Excel displays a message
box to verify that you really want to remove the sheet. You
remove the specified sheet from the workbook using the
Delete button. Remember, if the sheet contains any data,
Excel permanently removes all data as well as the specified
sheet.

DELETE A SHEET

EXCEL PROGRAMMING

162

DELETE A SHEET

113646-X Ch10.F 10/16/01 2:38 PM Page 162

› Type Sheets(DeleteWS).Delete. ˇ Switch to Excel and
run the macro.

Note: See Chapter 1 for more on
running a macro.

� Excel removes the
specified sheet from the
workbook.

WORKING WITH WORKSHEETS 10

If you want to create a subroutine that only
removes worksheets from the workbook,
you can use the Delete method with the
Worksheets object instead of the Sheets
object. The Sheets object contains all
worksheets, chart sheets, and macro sheets
open within a workbook, whereas the
Worksheets object only keeps track of the
open worksheets. If you use the Worksheets
object to remove the first worksheet in the
workbook, Excel ignores any chart sheets that
exist in the workbook before the first worksheet.
The following statement finds the first worksheet
and ignores anything else that is not a worksheet.

Example:
Worksheets(1).Delete

On the contrary, if you only want to create a
subroutine that removes chart sheets from the
workbook, you can use the Delete method with
the Charts object. The Charts object contains all
of the chart sheets contained within the workbook.
Keep in mind that this method only works with
chart sheets, not charts embedded in worksheets.
When you use the Charts object with the Delete
method, Excel only considers actual chart sheets,
and ignores any worksheets within the workbook,
even if they exist before the specified chart sheet.
The following code statement deletes the first chart
sheet within the workbook, and ignores any other
sheet types.

Example:
Charts(1).Delete

163

113646-X Ch10.F 10/16/01 2:38 PM Page 163

⁄ Create a new subroutine. ¤ Type Dim LastSheet As
Long, replacing LastSheet
with the variable to
determine the number of
sheets in the workbook.

‹ Type LastSheet =
Sheets.Count.

You can rearrange sheets within a workbook using the
Move method with the Sheets object. When you
move a sheet, you indicate the new location by

specifying the name of the sheet that you want to place
before or after the current sheet.

The Move method has two optional parameters, Before
and After. Although both parameters are optional, you can
only use one of them. Use the Before parameter to specify
the sheet in front of which you want to move the current
sheet. Use the After parameter to specify the sheet after
which you want to place the current sheet. For example, the
following code statement moves the first sheet in a
workbook and places it behind the third sheet: Sheets(1).
Move After:=Sheets(3).

If you do not specify a Before or After parameter value,
Excel creates a new workbook and places the moved

worksheet in that workbook. The moved worksheet
becomes the only worksheet in the new workbook.

When you use the Sheets object, you reference all sheets
within the workbook including all workbooks, chart sheets,
and macro sheets. As shown in the example, you can use
index values to reference specific sheets based upon their
order within the workbook. You can also reference a sheet
using the sheet name that appears on the sheet tab.

Be sure to use all sheet references. Moving a sheet before
or after a non-existent sheet causes VBA to display a
Subscript out of range error. To avoid error, especially when
using index values to reference specific sheets, consider
employing the Count method to determine the exact
number of sheets in the workbook before attempting to
move sheets. When you know the number of sheets, you
can proceed with the move by not attempting a move
beyond the maximum number of sheets.

MOVE A SHEET

EXCEL PROGRAMMING

164

MOVE A SHEET

113646-X Ch10.F 10/16/01 2:38 PM Page 164

› Type Sheets(1).Move,
replacing Sheets(1) with a
reference to the sheet to
move.

ˇ Type After:=Sheets
(LastSheet), replacing After
with Before if you want to
place the sheet before the
specified sheet.

Á Switch to Excel and run
the macro.

� Excel moves the specified
sheet to the end of the
workbook.

WORKING WITH WORKSHEETS 10

As you work with Excel objects in VBA, especially
collection objects that contain several values,
such as the Sheets Collection, you frequently
must determine the number of objects within
the collection. Because the number of objects in
a collection varies based upon what you have
currently open, you need to determine the
number of objects as your code runs. The best
method for this is the Count property which
works with virtually all VBA collection objects to
return a value that specifies the number of
objects within the current collection:

Example:
NumSheets = Worksheets.Count

The Count property is read-only, meaning that you
cannot use it to change the number of sheets in a
workbook. But you should use it at any point where
the number of items in a collection may change. For
example, you may know that the Excel workbooks
on your system all have at least three pages because
you have set up your defaults to always create a
new workbook with three pages. Even if this is the
case, you should not assume that you always have
that many pages in each workbook you open.

165

113646-X Ch10.F 10/16/01 2:38 PM Page 165

⁄ Create a new subroutine. ¤ Type Dim LastSheet As
Long, replacing LastSheet
with the variable to
determine the number of
sheets in the workbook.

‹ Type LastSheet =
Sheets.Count.

You can copy and paste the new sheets in a workbook
using the Copy method with the Sheets object.
When you copy a sheet, you indicate the location for

the copy by specifying the name of the sheet that you want
Excel to place before or after the current sheet.

The Copy method has two optional parameters, Before
and After. Although both parameters are optional, you can
only use one of them. Use the Before parameter to specify
the sheet in front of which you want to place the copy of
the sheet. Alternately, you can use the After parameter to
specify the sheet after which you want to place the copy of
the sheet. The following code statement illustrates copying
the first sheet in a workbook and placing the copy behind
the third sheet: Sheets(1). Copy After:=Sheets(3). If
you do not specify a Before or After parameter value,
Excel creates a new workbook and places this lone copy in
that workbook.

When you use the Sheets object you reference all sheets
within the workbook, including chart sheets and macro
sheets. You can use index values to reference specific sheets
based upon their order within the workbook. You can also
reference a sheet using the sheet name that appears on the
sheet tab.

Be careful with the sheet references that you do use. If you
try to place a copy of a sheet before or after a non-existent
sheet, VBA displays a Subscript out of range error. To avoid
the potential for error, especially when using index values
to reference specific sheets, consider using the Count
method to determine exactly how many sheets you have
in a workbook before attempting to copy and paste.
Knowing the number of sheets ensures that you do not
attempt to place a sheet beyond the maximum number of
sheets.

COPY AND PASTE A SHEET

EXCEL PROGRAMMING

166

COPY AND PASTE A SHEET

113646-X Ch10.F 10/16/01 2:38 PM Page 166

› Type Sheets
(LastSheet).Copy, replacing
Sheets(LastSheet) with
a reference to the sheet to
copy.

ˇ Type Before:=Sheets(1),
replacing Sheets(1) with
the location for placing the
copied sheet before a sheet.

� Alternately, you can type
After:=Sheets (1), replacing
Sheets(1) with the
location for placing the
copied sheet after a sheet.

Á Switch to Excel and run
the macro.

� The specified sheet is
copied and placed in front of
or behind the indicated sheet
in the workbook.

WORKING WITH WORKSHEETS 10

The Copy method produces the same results
when you use it with the Chart object, Charts
collection object, Worksheet object, and
Worksheets collection object instead of the
Sheets object. You can use these other objects
when you only want to work with a specific type
of sheet. For example, to place a copy of a
worksheet at the beginning of the workbook,
you type: Worksheet(3).Copy
Before:=Worksheets(1). This code places a
copy of the third worksheet in front of the first
worksheet. If the first sheet in the workbook is
actually a chart, the copied sheet comes after
the chart, but still before the first worksheet. The
same process holds true for copying chart sheets,
but you use the Charts collection object to
specify the chart sheet to copy.

You can combine your object references with a
Copy statement. For example, you can place a copy
of the first workbook before the first chart sheet:

Example:

Worksheets(1). Copy Before:=Charts(1).

When you copy a sheet within a workbook, Excel
indicates the copy of the sheet by placing a number
in parentheses behind the sheet name. For example,
for Sheet3, Excel indicates the copied sheet as
Sheet3 (2), with the number in parentheses
indicating this is the second version. Copying this
worksheet again creates Sheet3 (3).

167

113646-X Ch10.F 10/16/01 2:38 PM Page 167

⁄ Create a new subroutine. ¤ Type Dim LastSheet As
Long, replacing LastSheet
with the variable to contain
the number of sheets in the
workbook.

‹ Type LastSheet =
Sheets.Count.

› Type For N = 2 To LastSheet.

� The For Next loop sets
the Visible property for all
but the first sheet.

You can hide specific sheets in a workbook using the
Visible property of the Sheets object. You may
want to hide sheets in a workbook to prevent others

from veiwing them. Typically these sheets contain the raw
values that you use to calculate data, and which displays on
a separate sheet. Keep in mind, hiding a sheet does not
keep a user from accessing it. Another user can unhide
sheets in Excel using the Unhide option on the Format
menu. If you have something that you do not want others to
access, consider protecting as well as hiding the sheet. See
the section “Protect a Worksheet” for more information
about protecting sheets.

Using the Visible property, you can either determine the
current state of a sheet — visible or not visible — or you
can change the state of a sheet. To determine the current

state of a sheet, you can assign the visible property to a
Boolean variable as follows: SheetProps =
Sheets(1).Visible.

If you declare the SheetProps variable as a Boolean value,
the variable receives a value of True if the specified sheet is
visible; otherwise, it receives a value of False. If you forget
to declare the variable as Boolean, Excel assigns a numeric
value of -1 if the sheet is visible, and 0 if the sheet is not
visible.

You change the visibility of a sheet by assigning a Boolean
value of True or False to the Visible property for the
appropriate sheet. You can hide all but one sheet in a
workbook. Excel requires that a workbook have at least one
visible sheet. The following code illustrates how to hide a
sheet so it is not visible: Sheet(2).Visible = False.

HIDE A SHEET

EXCEL PROGRAMMING

168

HIDE A SHEET

113646-X Ch10.F 10/16/01 2:38 PM Page 168

ˇ Type Sheets(N).Visible =
False.

Á Switch to Excel and run
the macro.

� Excel hides all but the first
sheet in the workbook.

WORKING WITH WORKSHEETS 10

Keep in mind that you cannot hide every
worksheet in a workbook. If you attempt to do
so, Excel displays a Run-time error indicating that
it is unable to set the Visible property of the
Worksheet class. This message essentially
means that you cannot hide all worksheets. To
avoid receiving that message, make sure you
leave one worksheet visible. To ensure that
another user does not hide the worksheet that
you want to keep visible, consider using the
Visible property. This property checks that a
sheet is visible before changing the visiblity of
the other worksheets.

Sheets that you hide are still accessible to the user
from within Excel. You can see which sheets are
hidden in a workbook by selecting Format ➪ Sheet
➪ Unhide. The Unhide dialog box lists all of the
sheets that are currently hidden. To unhide a sheet,
you need to click the appropriate sheet and then
click OK. This process is equivalent to setting the
Visible property for a sheet to True.

169

113646-X Ch10.F 10/16/01 2:38 PM Page 169

⁄ Create a new subroutine. ¤ Type Dim SheetName As
String, replacing SheetName
with the variable to contain
the new sheet name.

‹ Type SheetName =
InputBox(“Input Box Text”),
replacing Input Box Text
with the text to display on the
Input Box.

› Type ActiveSheet.Name =
SheetName.

You can change the name of a sheet within a
workbook using the Name property of the Sheets
object. By default Excel names all worksheets Sheet#

replacing # with the order in which you added the sheet to
the workbook. For example, a typical workbook contains
three worksheets, Sheet1, Sheet2, and Sheet3. If you add an
additional worksheet, by default Excel names the sheet
Sheet4. Excel uses the name Chart# for chart sheets. Again,
Excel assigns chart sheets numbers based upon the order in
which you add them with the first chart sheet being Chart1.
The other two types of sheets, macro sheets and dialog
sheets, also have the same naming conventions. Excel
names the first macro sheet you add to a workbook as
Macro1 and the first dialog sheet as Dialog1.

You can change the name of a sheet in a workbook by
assigning a new string value to the Name property of the
corresponding Sheet object. For example, the following

code illustrates how to change the name of the sheet to
Budget2000: Sheets(1).Name = “Budget2000”.
Remember when assigning a string value, you must enclose
the string in parentheses. You can also assign a string as the
value of a variable.

The other function of the Name property is to provide the
name of a specific sheet. For example, you can check that
a sheet has the appropriate name. To determine the name
of a sheet, you assign the string that the Name property
returns to a variable, for example: StringName =
Sheets(3).Name.

After assigning the value to a variable, you perform any of
the typical string functions. For example, you can compare
it to another string, or just display it using the MsgBox
function. See Chapter 7 for more information on working
with the MsgBox function.

CHANGE THE NAME OF A SHEET

EXCEL PROGRAMMING

170

CHANGE THE NAME OF A SHEET

113646-X Ch10.F 10/16/01 2:38 PM Page 170

ˇ Switch to Excel and run
the macro.

Á Type the desired sheet
name in the input box.

‡ Click OK.

� The name of the active
sheet changes to the name
specified by the user.

WORKING WITH WORKSHEETS 10

You can manually change the name of a sheet
within Excel by clicking Format ➪ Sheet ➪
Rename. Excel highlights the sheet name tab.
Click the tab and type the new name. After you
modify the name, click elsewhere on the sheet
and Excel updates the sheet name.

Because users can easily modify the name of a
worksheet within Excel, be careful when
referencing sheet names with your macros. If you
attempt to reference the name of a sheet that
has a changed name, Excel returns an error
message.

No matter what its name, Excel still keeps track
of the sheets based upon the order in which they
exist within the Sheet Collection. If you use the
Project Explorer to view the list of sheets in the
workbook, you see listings of Sheet1, Sheet2, and
so on, with the corresponding sheet name in
parentheses.

You can also use the Name property in conjunction
with the Parent property to determine the name
of the workbook that contains the current sheet.
You can use this Name property function to ensure
that you are in the appropriate workbook before
executing the contents of a macro. You determine
the name of the corresponding workbook using
the code CurrentWB = ActiveSheet.Parent.
Name.

171

113646-X Ch10.F 10/16/01 2:38 PM Page 171

⁄ Create a new subroutine. ¤ Type ActiveSheet.SaveAs,
replacing ActiveSheet
with a reference to the sheet
you want to save.

You can save a specific sheet in your workbook with
the SaveAs method. You can use this property with
a Sheets Collection object, which enables you

to save any sheet. You can also use the property with a
specific Worksheet or Chart object to indicate a specific
workbook or chart that you want to save.

With the SaveAs method, you have eight different optional
parameters that specify how Excel saves the sheet:
FileName, FileFormat, Password,
WriteResPassword, ReadOnlyRecommended,
CreateBackup, AddToMru, and Local.

You use the FileName parameter to specify the file name
and location where you want to save the selected sheet. If
you omit this parameter value, Excel utilizes the filename of
the corresponding workbook as the value for the
FileName parameter. If you do not specify a path as part of
the filename, Excel saves the file containing the sheet in the
current folder.

You use the FileFormat parameter to specify the file
format for saving the sheet to a file. You save the sheet
to any of the file formats supported by Excel with one of
the xlFileFormat constant values. See Appendix A for a
list of the xlFileFormat constant values. If you do not
specify a FileFormat parameter value, Excel uses the
default value. The default value consists of the last specified
file format you used to save a sheet as well as the version of
Excel you use for new files. For example, to save a sheet to a
Text file, you use the xlTextMSDOS XLFileFormat
constant value.

With the Password parameter you can specify up to a
15-character password for opening the file. You use the
WriteResPassword parameter to restrict the file to open
as read-only without the password. The other parameters
accept Boolean values of either True or False.

SAVE A SHEET TO ANOTHER FILE

EXCEL PROGRAMMING

172

SAVE A SHEET TO ANOTHER FILE

113646-X Ch10.F 10/16/01 2:38 PM Page 172

‹ Type FileName:=
”NameofFile”, replacing
NameofFile with the name
and path to save the file.

› Type FileFormat:=xlHtml,
replacing xlHtml with the
format in which you want to
save the file.

ˇ Switch to Excel and run
the macro.

� The current sheet is saved
in the specified format.

WORKING WITH WORKSHEETS 10

The FileFormat parameter accepts any of the
XlFileFormat constant values, as outlined in
Appendix A. The list of available file formats is
rather extensive. Typically, you save the
worksheet in another workbook by specifying
the xlWorkbookNormal constant. This constant
creates a new workbook based upon the default
workbook format for the current version of
Excel. If you need to save the workbook in a
format to be used by an earlier version of Excel,
you need to specify the appropriate format
parameter. For example, xlExcel5 saves the
workbook in a format that can be opened by
Excel 5.0 or later.

As specified, the Password and
WriteResPassword parameters provide
two different types of protection for the new
workbook. The Password parameter protects the
workbook from being opened. In other words,
you must specify the correct value for the
Password parameter to open the workbook
containing the sheet. You can employ the
WriteResPassword parameter with or without
the Password parameter to indicate the password
that must be specified to modify the workbook. If
the user types a password that does not match the
one specified by the WriteResPassword
parameter, the workbook opens as read-only and
the user cannot modify it.

173

113646-X Ch10.F 10/16/01 2:38 PM Page 173

⁄ Create a new subroutine. ¤ Type Worksheets
(1).Protect, replacing
Worksheets(1) with a
reference to the worksheet
to protect.

You can use the Protect method to password protect
a worksheet so that other users cannot modify it. You
can allow certain types of modifications, such as

inserting rows, by specifying the appropriate parameter
value for the Protect method.

The Protect method has several different optional
parameters that enable you to customize the type of
protection that you assign to the workbook. Most of these
parameters accept only True or False to indicate whether
that type of protection is active for the workbook. The
parameters include: Password, DrawingObjects,
Contents, Scenarios, UserInterfaceOnly,
AllowFormattingCells, AllowFormattingColumns,
AllowFormattingRows, AllowInsertingColumns,
AllowInsertingRows, AllowInsertingHyperlinks,
AllowDeletingColumns, AllowDeletingRows,
AllowSorting, AllowFiltering, and
AllowUsingPivotTables.

Although optional, you need to specify the Password
parameter to really protect the worksheet. You can use any

string, but remember it is case-sensitive. In other words,
Excel interprets “Password” and “PASSWORD” differently.

All other parameters of the Protect method accept only
True and False values. You use the DrawingObjects
parameter to protect any shapes you add to your worksheet.
The default value is False. By default, Excel protects the
locked cells and scenarios if a worksheet is protected. To
remove the protection of locked cells, specify a value of
False for the Contents parameter. To unprotect scenarios,
specify a value of False for the Scenarios parameter. If
you do not use the UserInterfaceOnly parameter, Excel
applies the protection to macros and the user interface
options for the worksheet. If you only want the user
interface protected, specify a value of True for the
UserInterfaceOnly parameter.

The other parameters all have default values of False. If
you want to allow any of those options when you protect
the worksheet, change the value of the corresponding
parameter to True.

PROTECT A WORKSHEET

EXCEL PROGRAMMING

174

PROTECT A WORKSHEET

113646-X Ch10.F 10/16/01 2:38 PM Page 174

‹ Type Password:=”Excel”,
replacing “Excel” with the
password you want to use to
unprotect the worksheet.

› Type
AllowFormattingCells:=True.

ˇ Specify any other
parameters you need to
protect the worksheet.

Á Switch to Excel and run
the macro.

� Excel no longer allows
modifications to the
worksheet.

WORKING WITH WORKSHEETS 10
After you protect a worksheet, a user must use
the appropriate password to make modifications to it. A
user specifies the password in Excel by clicking Tools ➪
Protection ➪ Unprotect Sheet and typing the appropriate
password for the sheet in the dialog box that appears.
When the user types the appropriate password, the
worksheet remains unprotected and the user can make any
necessary modifications.

You can unprotect the worksheet from within a procedure
with the Unprotect method. You use this method with
any sheet or workbook that you want to protect. If you use
this method with an unprotected worksheet, Excel ignores
it and the worksheet remains unaffected.

The only parameter required for the Unprotect method
is the Password parameter. You must use this parameter
as a string to represent the password of the worksheet
you want to unprotect. Remember that the password is
case-sensitive and must match the current password of the
worksheet. For example, ActiveWorkbook.Unprotect
Password:=”Excel” unprotects the active worksheet by
passing it the correct password.

Remember to keep track of the passwords that you have
assigned to worksheets. If you lose a password, you cannot
access the password-protected document.

175

113646-X Ch10.F 10/16/01 2:38 PM Page 175

⁄ Create a new subroutine. ¤ Type Charts(1).Protect,
replacing Charts(1) with a
reference to the chart to
protect.

You can protect a chart so that a user cannot modify it
using the Protect method. When you protect a chart
you typically password protect it to eliminate the

ability to modify it.

The Protect method uses different optional parameters
that enable you to customize the type of protection that
you assign to the chart. All but one of these parameters
accept only True or False to indicate whether or not that
type of protection is active for the workbook. The following
code illustrates use of the Protect method with a chart:
Charts(1). Protect(Password, DrawingObjects,
Contents, Scenarios, UserInterfaceOnly).

Although optional, to effectively protect the chart, you need
to specify the password. You can use any string, but
remember that it is case-sensitive. This means that Excel
treats uppercase and lowercase letters as different characters.
In other words, Excel interprets Password and PASSWORD
differently, even though they are the same word.

All other parameters of the Protect method accept only
True and False values. You use the DrawingObjects
parameter to protect any shapes you add to your chart with
the drawing options in Excel. The default value of this
parameter is False. By default, Excel protects the entire
chart and scenarios if you protect a chart. To remove the
protection, specify a value of False for the Contents
parameter. To unprotect scenarios, specify a value of False
for the Scenarios parameter. If you do not use the
UserInterfaceOnly parameter, Excel applies the
protection to macros and the user interface options for the
chart. If you only want to protect the user interface, specify
a value of True for the UserInterfaceOnly parameter.

You can unprotect a chart using the Unprotect method
with the corresponding password for the chart.

PROTECT A CHART

EXCEL PROGRAMMING

176

PROTECT A CHART

113646-X Ch10.F 10/16/01 2:38 PM Page 176

‹ Type Password:=”Excel”,
replacing “Excel” with the
password you want to use to
unprotect the chart.

› Type
DrawingObjects:=False.

ˇ Specify any other
parameters needed to protect
the chart.

Á Switch to Excel and run
the macro.

� Excel no longer allows
modifications to the chart.

WORKING WITH WORKSHEETS 10

VBA provides different properties that
you can use with worksheet and chart
objects to determine if parts of a sheet
are protected. Doing this helps to
eliminate errors caused by attempting to

modify a protected sheet. Each of these
properties are read-only, meaning you
can only use them to determine if the
sheet has that type of protection.

PROPERTY DESCRIPTION

ProtectContents Returns a value of True if the sheet is protected. For a
chart, the property looks to see if the entire chart is
protected. For a worksheet, the property looks to see if
the cells are protected. To turn off this property, set the
Contents parameter of the Protect method to False.

ProtectDrawingObjects Returns a value of True if the drawing shapes that were
added to the sheet are protected. To turn off this property,
set the DrawingObjects parameter of the Protect
method to False.

ProtectScenarios Returns a value of True if the scenarios are protected. To
turn off this property, set the Scenarios parameter of
the Protect method to False.

ProtectionMode Returns a value of True if the user-interface is protected.

177

113646-X Ch10.F 10/16/01 2:38 PM Page 177

⁄ Create a new subroutine. ¤ Type ActiveSheet.
PageSetup.PrintArea =
“A2:H9”, replacing
“A2:H9” with the
range of cells to print.

You can create a procedure to print the contents of a
sheet using the PrintOut method. Not only do you
have the ability to specify what to print, you can also

specify the number of copies to print or the method to
print the contents of a sheet to a file. The PrintOut
method has several different properties available for
specifying how Excel prints the sheet: From, To, Copies,
Preview, ActivePrinter, PrintToFile, Collate, and
PrToFileName.

You use the From and To parameters to indicate the range
of pages within the specified sheet to print. You indicate the
page number of the first page to print as the value of the
From parameter and the page number of the last page as
the value of the To parameter. If you omit these
parameters, Excel prints the entire sheet.

By default, Excel prints one copy of the sheet. For multiple
copies, use the Copies parameter to indicate the desired

number. You can specify a value of True for the Collate
parameter to have Excel collate the copies.

If you want the Excel preview window to show the contents
of the print selection, set the value of the Preview
parameter to True. Keep in mind that the Print button on
the Print Preview screen actually prints the copy and that
the Close button cancels the print.

You can specify the printer Excel uses with the
ActivePrinter parameter. To set a default printer,
you can specify the name of the printer for this parameter.

You can also send the printout to a file instead of a
printer by setting the PrintToFile parameter to True
and specifying the name of the file to which you want to
send the printout. If you do not specify a filename, Excel
prompts you for one when your procedure runs.

PRINT A SHEET

EXCEL PROGRAMMING

178

PRINT A SHEET

113646-X Ch10.F 10/16/01 2:38 PM Page 178

‹ Type ActiveSheet.PrintOut.

› Type Preview:= True.

ˇ Type ActivePrinter:= "HP
DeskJet 894Cxi", replacing HP
DeskJet 894Cxi with the
name of the printer to use.

Note: You need to specify the name of
a printer that is defined on your
system.

� Specify any additional
optional parameter values for
the Print method.

Á Switch to Excel and run
the macro.

� The Print Preview screen
displays.

‡ Click Print to print the
specified cells.

� Alternately, you can click
Close to cancel the print.

� Excel prints the cells.

WORKING WITH WORKSHEETS 10
Instead of setting the range, you can set a print area for a
worksheet with the PrintArea property. You use this
property with the PageSetup object, a child object of the
Worksheets collection object. You assign a range of cells as
the print area, for example: ActiveSheet.PageSetup.
PrintArea = “A2:G8”. This code sets the range of
cells in the print area to A2-G8. Even if cells outside that
range contain data, Excel does not print them. The dollar
signs in front of the row and column references indicates
that you use absolute references to the cells you want to add
to the range. See Chapter 11 for more information about
absolute cell references.

When you use the PrintArea property to set the range of
cells to print, you can omit the From and To parameters with
the PrintOut method. If you want to clear the print area,
you need to use the PrintArea property again and assign it
a value of False or an empty string. Both of the following
lines of code clear the print area:

Example:
ActiveSheet.PageSetup.PrintArea = False
ActiveSheet.PageSetup.PrintArea = “ “

179

113646-X Ch10.F 10/16/01 2:38 PM Page 179

⁄ Create a new subroutine.

¤ Type Dim SheetName As
String, replacing SheetName
with the variable for storing
the smallest sheet name.

‹ Type Dim SheetCount As
Integer, replacing
SheetCount with the
variable to store number of
sheets.

› Type SheetCount =
Sheets.Count.

ˇ Type For N = 1 To
SheetCount.

Á Type SheetName =
Sheets(N).Name.

‡ Type For M = N To
SheetCount.

You can use VBA to sort the order of the worksheets in
a workbook based upon the worksheet name. When
you first create a new workbook with three

worksheets, Excel lists the sheets in order: Sheet1, Sheet2,
and Sheet3. But as you add additional sheets the order of
the sheets can change dramatically. For example, if your
active sheet is Sheet2 and you instruct Excel to add a new
sheet, Excel adds it before Sheet2. If your workbook
contains three worksheets, Excel adds the new sheet and
names it Sheet4 making the order of your sheets Sheet1,
Sheet4, Sheet2, Sheet3. Or course, you can easily resolve
this by manually renaming or moving the sheets within the
workbook.

Alternately, you can create a subroutine that sorts the
worksheets so that Excel lists them in alphabetical order. To
do this, you must first determine the number of sheets
within the workbook using the Count property.

When you know the number of sheets in a workbook, you
need to use For Next looping to cycle through the sheets
so Excel can compare the names and move a sheet when
one name is greater than another. You can accomplish this
with nested looping, which is the process of placing one
looping statement within another looping statement. The
inside loop executes completely and control returns to the
outside loop. See Chapter 6 for more information on using
For Next looping statements.

Within the second For Next loop you can use an If
Then statement to compare the name of a sheet to the
currently smallest sheet name. If that name is smaller, it
becomes the new smallest name. Remember, Excel does an
alphabetical comparison when you deal with strings.
Therefore, “apple” is smaller than “bat” even though the
word apple has more characters.

SORT WORKSHEETS BY NAME

EXCEL PROGRAMMING

180

SORT WORKSHEETS BY NAME

113646-X Ch10.F 10/16/01 2:38 PM Page 180

° Type If Sheets(M).Name <
SheetName Then.

· Type SheetName =
Sheets(M).Name.

‚ Type End If.

— Type Next.

± Type
Sheets(SheetName).Move
Before:=Sheets(N).

¡ Switch to Excel and run
the macro.

� The sheets are sorted
alphabetically within the
workbook.

WORKING WITH WORKSHEETS 10

In step 12 of the task example, Excel determines
the sheet with the smallest name in the inside
loop and places that sheet before the current
sheet. Although this code works correctly, it is
not the most effective method of sorting a larger
list of items. The code attempts to move the
sheet without first checking to see if the sheet
the smallest is the same sheet as the current
sheet. Therefore, if the sheets are identical, Excel
still attempts to move them. To make the
execution of the code more efficient you can add
a conditional If Then statement that compares
the two statements, as long as they are not the
same sheet, and then performs the move. By
adding this statement, the code runs more
effectively because it determines that no move is
required if the sheet is already in the correct
order.

181

TYPE THIS:

If Sheets(SheetName) <> Sheets(N) Then

Sheets(SheetName). Move Before:=Sheets(N)

End If

RESULT:

This code checks that the sheet you are moving
and the sheet before which you intend to move
it are not the same sheet. If the sheets are the
same, Excel ignores the move statement and
continues on with the looping statements.

113646-X Ch10.F 10/16/01 2:38 PM Page 181

You can use the Range property to define a range of
cells within a worksheet. When you define a range,
you create a Range object which you can make a

single cell, an entire column, a row, or a selection of
multiple cells. Typically when working with the contents of
a worksheet, you need to define a range in order to make
any modifications to it.

You can use the Range property with an Application,
Worksheet, or Range object. Therefore, the statements
Application.Range and ActiveSheet.Range return
the same results. If you use the Range property without an
object, Excel assumes that the object you reference is the
ActiveSheet.

There are two different syntaxes that you can use with the
Range property. The first version requires two different
parameters, Cell1 and Cell2. With this form of the

Range object, you reference the upper left corner of the
desired range with the Cell1 parameter and the lower-
right corner of the range with the Cell2 parameter. For
example, to specify a range of cells between A1 and E15 you
use the code: Range(“A1”, “E15”).

The other form of the Range property requires the use of a
Name parameter. This required parameter indicates a range
using the A1-style reference. You use a colon between two
cells to specify a range. For example, Range(“A3:F5”)
specifies the range of cells from A3 to F5. You can specify
the union between two ranges by placing a comma
between the range definitions. You can also specify the
location where two ranges intersect by leaving a space
between the two range definitions. For example,
Range(“A3:F3 D2:G5”) specifies a range where the
range of cells A3 to F3 intersect with the range of cells D2
to G5.

USING THE RANGE PROPERTY

182

USING THE RANGE PROPERTY

EXCEL PROGRAMMING

USING THE RANGE PROPERTY
WITH CELL REFERENCES

⁄ Create a new subroutine.

Note: See Chapter 3 for information
on creating subroutines.

¤ Type Range(“A1”,
“B3”).Select, replacing A1
and B3 with the upper-right
and lower-left corners of the
selection.

� Alternately, you can
place a space or a colon (:)
between the ranges to specify
an intersection or union.

‹ Switch to Excel and run
the macro.

Note: To learn how to run a macro,
see Chapter 1.

� The specified range of cells
is selected.

123646-X Ch11.F 10/16/01 2:38 PM Page 182

You can use the Select method with a
Range object to highlight a cell or range of
cells on a worksheet. For example, to select
the range of cells from A3 to B6, you type
Range(“A3:A6”).Select.

When you use the Select method with a
Range object, the active cell becomes the
first cell in the specified range. If you specify
individual cells with the Select method, the
active cell is the first cell specified. For example,
Range(“A3, A1, A5”).Select selects cell
A3 as the active cell.

You can also use the Activate method to
highlight a cell or range of cells. With the Activate
method, the first cell referenced in the range is the
active cell, but all of the other cells in the range are
highlighted to indicate that they are also selected.
For example, in the code Range(“B4:C6”).
Activate, Excel marks B4 as the active cell and
highlights the remaining cells. Keep in mind, when
you use the Select method, the first cell in the
range is also marked as the active cell. This makes
the two methods totally interchangeable when
dealing with ranges.

DEFINING RANGES 11

183

USING THE RANGE PROPERTY
WITH NAMES

⁄ Create a new subroutine.

¤ Type Range(“A3: C7,
E1:F3”).Select, replacing
A3:C7 with the first range
of cells and E1:F3 with a
second range of cells.

‹ Switch to Excel and run
the macro.

� The specified range of cells
is selected.

123646-X Ch11.F 10/16/01 2:38 PM Page 183

⁄ Create a new subroutine. ¤ Type For N = 1 To 10,
replacing 10 with the
number of cells to modify.

‹ Type Cells(N, 1) = N,
replacing N with the value
to assign to each cell.

You can use the Cells property to reference specific
cells in a worksheet, allowing you to make changes to
the values or properties of the cells, such as the font

settings. The Excel Object Model does not contain a Cells
object, so in order to reference specific cells you use either
the Cells property or the Range property, each of which
actually returns a Range object with the specified cells. See
the section “Using the Range Property” for more
information on the Range property. One big difference in
the two properties is that the Cells property, when you
use it with its two parameters, returns only a single cell,
whereas you typically use the Range property to return a
series of cells.

You can use the Cells property with the Application,
Range, and Worksheet objects. When you use it with
the Application and Worksheet objects, you return
the same result. For example, you can type Cells,
Application.Cells, or ActiveSheet.Cells to

return a Range object containing all cells in the active
worksheet.

If you use the Cells property with the optional
parameters, you can reference a specific cell within the
worksheet. The first parameter, row, contains an integer
value between 1 and 65536 indicating the row index. The
second parameter, column, contains an integer value
between 1 and 256 indicating the column index. For
example, using this method to reference cell B5, you assign
a value of 5 for the row parameter and a value of 2 for the
column parameter, as shown in this code: Cells(5,2).

One big advantage of using the Cells property instead of
the Range property is that you can utilize variables to easily
change the integer values. For example, you can use a
variable to represent either the row or column, as shown in
this code: Cells(N,1) = 5, which sets the value of the
cell in column A and the row specified by N to 5.

USING THE CELLS PROPERTY

EXCEL PROGRAMMING

184

USING THE CELLS PROPERTY

123646-X Ch11.F 10/16/01 2:38 PM Page 184

› Type Cells(N, 1).Font.Bold
= True, replacing Bold with
the font attribute to assign to
the cells.

� You can use any properties,
methods, or child objects of
the Range object to customize
the selected range of cells.

ˇ Type Next.

Á Switch to Excel and run
the macro.

� The value and font
attributes of the specified
cells are changed.

DEFINING RANGES 11
You can use the Font object to specify the font attributes for specify objects within Excel.
Typically you use it to modify the attributes of a cell or a range of cells. The Font object
has several properties that allow you to view or modify the attributes of the specified
object. The following table lists the common properties you can use with the Font object.

FONT PROPERTY DESCRIPTION

Bold A Boolean value indicating whether the font for the object is bold.

Color Indicates the color of the font. Use the RGB function to set the font color.

FontStyle Indicates the font style. For example, to set both a bold and underline font style you
specify Font.FontStyle = “Bold Underline”

Italic A Boolean value indicating whether the font for the object is italics.

Shadow A Boolean value indicating whether the font is a shadow font.

Size Indicates the size of the font.

Strikethrough A Boolean value indicating whether a strikethrough font is used. A strikethough font
draws a horrizontal line through each character in the font.

Subscript A Boolean value indicating whether the font is subscript.

Superscript A Boolean value indicating whether the font is superscript.

Underline A Boolean value indicating whether the font is underlined.

185

123646-X Ch11.F 10/16/01 2:38 PM Page 185

⁄ Create a new subroutine.

¤ Type Dim Range1 As
Range, replacing Range1
with the name of the first
range.

‹ Type Dim Range2 As
Range, replacing Range2
with the name of the second
range.

› Type Dim NewRange As
Range, replacing NewRange
with the name of the
combined range.

ˇ Declare any additional
variables needed for the
subroutine.

Á Type Set Range1 =
Range(“A1:B3”), replacing
Range(“A1:B3”) with a
reference to the first range.

‡ Type Set Range2 = Cells(5,5),
replacing Cells(5,5) with a
reference to the second range.

You can use the Union method to create a muliple
area range. A multiple area range contains more than
one block of cells, which may not be connected. For

example, you use the Union method to create a Range
object containng the cells A1 through B5 and D1 through
E5. Although these two groups of cells are separated within
the worksheet, using the Union method you can create one
range that references only those cells.

When you use the Range property in conjunction with the
Union method, you can assign any number of parameter
values, as long as you specify at least two different ranges.
Each parameter value must specify a range of cells. You can
specify the ranges that you assign to the Union method
using any option that returns a valid Range object, such as
the Range property or the Cells property. See the
sections “Using the Range Property” and “Using the Cells

Property” for more information on the Range and Cells
properties.

For example, the code Set RangeVar = Union
(Range(“A1:A3”), Range(“A5:A15”) uses the Union
method to combine two Range objects created with the
Range property and assigns the result to a Range variable.
With this sample code, the new range contains the cells A1
through A3 and A5 through 15. When you view this range,
you see that cell A4 is not selected as part of the range.

Because you must declare the variable to which you assign
the multi-area range as a Range object, you need to use the
Set statement as part of the assignment statement. You
must use the Set statement whenever you assign an object
to a variable. See Chapter 4 for more information on
assigning objects.

COMBINE MULTIPLE RANGES

EXCEL PROGRAMMING

186

COMBINE MULTIPLE RANGES

123646-X Ch11.F 10/16/01 2:38 PM Page 186

° Type Set NewRange =
Union(Range1, Range2).

· Type additional VBA
code to work with the new
combined range of cells.

‚ Switch to Excel and run
the macro.

� Excel highlights the
combined range of cells.

DEFINING RANGES 11
When you use the Union method, you combine multiple ranges to create
one multi-range, or Area Collection. You can reference the entire range
selection using the Selection property. This property returns the
selected object. You can combine the Selection property with the
Areas property to return an Areas collection representing all of the
areas selected after performing a union.

The Areas Collection actually contains a collection of the specific areas,
or blocks of cells, within a specific selection. Each individual member of
the Area Collection is actually a Range object representing a contiguous
block of cells with one Range object for each block of cells.

You cannot apply some VBA operations to ranges that contain multiple
areas. Therefore, you may need to determine the number of areas within
a specific range. In order to do this, you can use the Count property. The
Count property counts the number of areas within the range, if a value
greater than 1 is returned, you know there is more than one area selected.
The following example uses the Count property to determine the
number of areas within the selected range.

Example:

AreasInNewRange = Selection.Areas.Count.

187

123646-X Ch11.F 10/16/01 2:38 PM Page 187

⁄ Create a new subroutine.

¤ Type Dim FirstRange As
Range, replacing FirstRange
with the current range variable.

‹ Type Dim NewRange As
Range, replacing NewRange
with the new range variable.

› Type Set FirstRange =
Range(“A1:B4”), replacing
Range(“A1:B4”) with
the current range.

The Offset property provides another method for
specifying a range of cells. Using the Offset property
you can define a range that is a specific offset from

another range with the offset being the distance, in rows
and columns, between the new range and the existing
range selection.

You use two different parameters with the Offset
property. Although both are optional, you specify at least
one of the values or the current selection is returned. Use
the RowOffset parameter to indicate the number of rows
to offset the range from the current selection. A positive
number offsets the range downward. A negative value
offsets the range upward. The offset values are based upon
the the upper left cell in the selected range. For example, if
the active range is cells A1 through B4, the offset values are
based upon the number of rows and columns from cell A1.

Use the ColumnOffset parameter to specify the number
of columns to offset the range from the current selection. A
positive number offsets the range to the right. A negative
number offsets the range to the left. The default value for
both parameters is 0.

If you only assign a value to one of the parameters, Excel
gives the other parameter a value of 0. For example, if you
specify a value of 5 for the RowOffset and omit the
ColumnOffset parameter value, the property returns the
range that is five rows from the current range selection.

If you specify a value outside the valid number of rows and
columns in a worksheet — for example, if you specify -1
and the current cell is A1 — Excel returns an error. The
acceptable range for columns is 1 to 256 and the acceptable
range for rows is 1 to 65536.

USING THE OFFSET PROPERTY

EXCEL PROGRAMMING

188

USING THE OFFSET PROPERTY

123646-X Ch11.F 10/16/01 2:38 PM Page 188

ˇ Type Set NewRange =
FirstRange.Offset(3, 3),
replacing 3,3 with the
offset for the new range.

Á Type additional VBA code
for processing the new range.

‡ Switch to Excel and run
the macro.

� Excel highlights the newly
created range with the Offset
property on the worksheet.

DEFINING RANGES 11
Besides referencing specific blocks of cells to create Range objects,
you can specify a Row or Column as a Range object with the Rows
and Columns properties. If you specify an entire column as a range
selection, Excel creates a Range object containing the specified
column. For example, the following code selects Column B and the
selected column:
SelectedColumn = Columns(2).

You can use the Rows property to specify a row you want to use as
a Range object. With this property, Excel selects the entire row as
the Range object:
SelectedRow = Rows(3).

You can also use each of these properties separately to refer to the
entire group of columns or the entire group of rows within the
worksheet. For example, the following code refers to the current
columns:
Set ColRange = Columns.

You can use the Rows and Columns properties to determine a
specific column or row within a range. For example, if you have a
range of cells from B5 to G10, using the Rows parameter you can
select the first row within the specified range. You can accomplish
this by specifying the desired row, as shown in this code.
Set RngObj = Range(“B5:G10”)

RngObj.Rows(1).Select

189

123646-X Ch11.F 10/16/01 2:38 PM Page 189

⁄ Create a new subroutine. ¤ Type Dim RangeDelete
As Range, replacing
RangeDelete with the
name of the range to delete.

‹ Type Set RangeDelete =
Range(“A1:B4”), replacing
Range(“A1:B4”) with
the range to delete.

You can remove a specific range of cells from a
worksheet using the Delete method. When you
delete a range of cells, Excel completely removes the

specified cells and adjusts the remaining values within the
worksheet to fill in the gap left by the deletion. For
example, if you remove an entire column of values, such as
column B, Excel shifts the values in column C left and they
become the new column B values. All remaining column
values shift left. Conversly, if you delete a row, Excel shifts
all values in the rows below up one row.

Excel easily determines how to shift the cells when you
remove entire rows and columns, but if you just remove a
block of cells, you must specify how the remaining values
fill to ensure you get the anticipated results. You can specify
how Excel shifts the cells using the Shift parameter with
the Delete method. When you use the Shift parameter,

you assign it one of the XLDeleteShiftDirection
constant values. The first value, xlShiftToLeft, tells Excel
how to shift values to the left to fill the gap created by the
deletion. The xlShiftUp constant value indicates that
Excel should shift the values up from below the deletion
to fill the gap.

Keep in mind that Excel ignores the Shift parameter value
if it is not a valid shift direction for the deleted range. For
example, the code Column(2).Delete Shift:=xlShiftUp
deletes a specific column, but Excel still shifts the cells left;
because you removed the entire column there are no cells
to shift up. Although these instances may occur
occasionally, for best results, remember to specify how to
shift the cells, so that when Excel has a choice, your cells
shift in the appropriate direction.

DELETE A RANGE OF CELLS

EXCEL PROGRAMMING

190

DELETE A RANGE OF CELLS

123646-X Ch11.F 10/16/01 2:38 PM Page 190

› Type RangeDelete.Delete
Shift:=xlShiftUp, replacing
xlShiftUp with the constant
indicating how to shift the
remaining cell values.

ˇ Switch to Excel and run
the macro.

� Excel removes the specified
range of cells and adjusts the
remaining cells accordingly.

DEFINING RANGES 11
If you protect a worksheet, you cannot remove or add cells.
To eliminate any errors that may occur from trying to remove a
range from a protected worksheet, you can use the AllowEdit
property to determine if you can modify the range. The
AllowEdit property returns a Boolean value of True if you can
modify the specified range. In the example code, you can use the
AllowEdit property to check the range to make sure you can
modify a range before you call the Delete method.

Example:
If RangeDelete.AllowEdit Then

RangeDelete.Delete Shift:=xlShiftUp

End If

Excel checks the AllowEdit property for the specified Range
object. Using the If Then statement ensures that the code only
attempts to delete the specified range of cells if you can modify
the range. Otherwise, Excel ignores the Delete statement.

You protect worksheets using the Protect method. The type of
protection you apply is based upon the parameters you use with
the Protect method. See Chapter 9 for more information on
using the Protect method to protect a specific worksheet.

191

123646-X Ch11.F 10/16/01 2:38 PM Page 191

⁄ Create a new subroutine.

¤ Type Dim StartColumn
As Integer, replacing
StartColumn with the
name of the first column
to hide.

‹ Type Dim EndColumn As
Integer, replacing EndColumn
with the name of the last
column to hide.

› Type StartColumn = 1,
replacing 1 with the first
column number.

ˇ Type EndColumn = 2,
replacing 2 with the last
column number.

You can hide a specific range of cells using the Hidden
property with the Range object that you want to
hide. You can use the Hidden property to either

change the range of cells that you want to hide or to
determine if the range is visible or hidden. You commonly
hide portions of a worksheet that contain values that you
do not want others to see when they access your
worksheet. For example, you may have a worksheet that
contains the formulas and the values you use to calculate
the displayed data. By hiding the cells that contain the
original data, you eliminate a user’s ability to view the data
you want to keep invisible.

In order to use the Hidden property to hide a range of
cells, the range of cells you want to hide must consist of
an entire row or column. You make a range hidden by

assigning a value of True to the Hidden property for the
specified range. Keep in mind that when you hide a range
of cells, Excel either sets the width of the columns or the
height of the rows to zero making it appear that it is not
visible.

You can later verify that the range of cells is still hidden by
checking the Hidden property. For example, if you hid
column A, you can check to ensure the column is still
hidden by typing HiddenRange = Range1.Hidden. If
you declare the HiddenRange variable as a Boolean value,
the variable receives a value of True if the specified range
is hidden; otherwise, it receives a value of False. If you
forget to declare the variable as Boolean, Excel assigns a
numeric value of -1 if the range is hidden and 0 if the range
is visible.

HIDE A RANGE OF CELLS

EXCEL PROGRAMMING

192

HIDE A RANGE OF CELLS

123646-X Ch11.F 10/16/01 2:38 PM Page 192

Á Type For N = StartColumn
to EndColumn.

‡ Type Columns(N).Hidden =
True.

° Type Next.

· Switch to Excel and run
the macro.

� Excel hides the specified
columns.

DEFINING RANGES 11
When you hide a row or column in Excel, you can still access the values contained in the
cells with references in functions and macros. Excel indicates the existence of hidden rows
and columns by skipping over the hidden rows and columns with the row and column
headings. For example, if you hide columns C and D, you see the column labels for columns
A, B, E, F, etc.

You can hide the entire worksheet using either the Columns or Rows properties. Either one
of the following produces the same results by hiding either all rows or all columns.

Example:
Columns.Hidden = True

Rows.Hidden = True

To unhide rows or columns in a worksheet, you need to set the Hidden property to False.
For example, the following code statement unhides all columns in a worksheet.

Example:
Columns.Hidden = False

This statement is useful for ensuring that all cells in a worksheet are visible. If you apply it
to a column that is already visible, Excel ignores the statement and the column remains
visible. Of course, you can also use the Rows property in the same fashion to unhide any
invisible rows.

Example:
Rows.Hidden = False

193

123646-X Ch11.F 10/16/01 2:38 PM Page 193

⁄ Create a new subroutine. ¤ Type Columns(3).Name =
“Salary”, replacing Columns(3)
with the range to name and
“Salary” with the name
for the range.

You can use the Name property to assign a specific
name to a range of cells. Excel uses names to
reference specific ranges of cells on a worksheet. By

specifying a named range you no longer have to know the
location of the cells that contain the desired values; you
simply need to find the cells with the appropriate range
name. For example, if cell B3 contains the sales tax rate,
instead of remembering the appropriate cell reference, you
can simply assign the name “Tax_Rate” to the cell. This
allows you to reference the cell by name when you want to
use it.

You can use the Name property to either assign a name to a
range of cells or to determine what the name is for the
range. To assign a name to a range you need to specify the
appropriate name. For example, the code Columns(3).
Name = “May_Sales” assigns the name May_Sales to

Column C in the active worksheet. After you assign the
name to the range, you can view it in Excel by highlighting
the corresponding range, in this case Column C, to see the
name appear in the Name box on the Formula Bar.

You can determine the name of a specific range by
assigning it to a string variable. For example, the code
RangeName = Columns(3).Name assigns the name of
Column C to the RangeName variable.

After you assign a range name to a specific range, you can
use the range name to access the range of cells at any point.
The advantage of using a range name is that you do not
need to set the range within your current procedure. When
you assign a range name to a worksheet, it remains there
until you remove it.

SPECIFY THE NAME OF A RANGE

EXCEL PROGRAMMING

194

SPECIFY THE NAME OF A RANGE

123646-X Ch11.F 10/16/01 2:38 PM Page 194

‹ Type Range(“Salary”).Select,
replacing “Salary” with the
name of the range.

› Switch to Excel and run
the macro.

� Excel highlights the named
range and the Name box on
the Formula bar contains the
range name.

DEFINING RANGES 11

You can create named ranges within Excel by highlighting the
selected range and clicking Insert➪Name➪Define to display the
Define Name dialog box. Type the appropriate range name in the
Names in workbook field and click Add. The list box on the dialog
box contains a list of all named ranges within the current
workbook.

You can see which cells are part of a specific named range by
highlighting the range within the list box and viewing the
corresponding range displayed in the Refers To field. Keep in
mind that Excel does allow you to assign multiple names to the
same range.

If you no longer want to make the named range available within
your workbook, you can highlight the range name and click Delete.
Keep in mind that if you delete a named range, any macro that
references the named range no longer works correctly.

Another method for creating a named range in Excel is to highlight
the range and then click the Name box. The Name box lists a
reference to the first cell in the range. To assign a name to the
range, type the desired range name in the Name box.

195

123646-X Ch11.F 10/16/01 2:38 PM Page 195

⁄ Create a new subroutine.

¤ Type Dim NumRows As
Integer, replacing NumRows
with the variable for the
number of rows in the range.

‹ Type Dim NumColumns
As Integer, replacing
NumColumns with the
variable for the number
of columns in the range.

› Type NumRows = Range
(“EmpInfo”).Rows.Count,
replacing “EmpInfo”
with the range to count.

ˇ Type NumColumns = Range
(“EmpInfo”).Columns.Count,
replacing “EmpInfo” with
the range to count.

You can change the size of a range using the Resize
property. Typically you resize a range because it does
not contain the desired number of cells. When you

resize a range, you change the number of rows and columns
in a range. You can change the size by specifying either
more or fewer rows or columns.

The Resize property has two optional parameters of
which you need to use at least one. If you do not use either
parameter, Excel returns the original range. The first
parameter, RowSize, indicates the number of rows in the
new range. The second parameter, ColumnSize, indicates
the number of columns in the new range.

When you resize the range, the upper-left corner of the
original range remains the same. For example, if the original
range is B1 through C4 and you resize the range to contain
only 2 rows and 2 columns, B1 remains as the upper-left cell

value. The range is adjusted based upon that cell creating a
new range of cells from B1 to C2.

You need to know how many rows and columns currently
exist in a range in order to determine how to resize it. If
you are dealing with a range that you defined elsewhere,
such as a named range, you can use the Count property to
determine the number of rows and columns within the
range, as shown in the following code: NumberofRows =
Range(“Named_Range”).Rows.Count The Count
property counts the number of rows in the named range
“Named_Range” and assigns that value to the
NumberofRows variable. You can use the same type of
syntax with the Columns property to determine the
number of columns in the range. When you know the size
of the range, you can use the Resize property to modify
the number of rows and columns.

RESIZE A RANGE

EXCEL PROGRAMMING

196

RESIZE A RANGE

123646-X Ch11.F 10/16/01 2:38 PM Page 196

Á Type an If Then
statement to determine if the
range contains the appropriate
number of rows and columns.

‡ Type NumRows = NumRows
+ 5, replacing + with – to
subtract and 5 with the
number to which you want
to change the row number.

° Type NumColumns =
NumColumns + 5, replacing +
with – to subtract and 5 with
the number to which you want
to change the column number.

· Type Range(“EmpInfo”).
Resize(RowSize:=NumRows,
ColumnSize:=NumColumns)
.Select.

‚ Switch to Excel and run
the macro.

� The newly sized range is
selected.

DEFINING RANGES 11
Besides determining the number of rows and columns within a range you may
also need to know the exact row or column where the range begins. You can
accomplish this by using either the Row property for rows or the Column
property for columns. You can determine the number of the first row in a range
with the following code:

Example:
FirstRowNum = CurrentRange.Row

This code assigns the integer value representing the first row in the specified
range to the FirstRowNum variable. You can also determine the first column in
the range using the Column property as shown in this code:

Example:
FirstColNum = CurrentRange.Column

When you know what the first row and column are in the range, you can create
the first cell in the range using the Cells property, as shown in this code:

Example:
Cells(FirstRowNum, FirstColNum)

This statement takes the values returned by the Row and Column properties
and determines the first cell. Typically this cell is also the active cell, if you have
just selected the range.

197

123646-X Ch11.F 10/16/01 2:38 PM Page 197

⁄ Create a new subroutine. ¤ Type Range(“A3:B4”).Copy,
replacing Range(“A3:B4”)
with the range of cells to copy.

Note: See Chapter 10 for information
on using the Copy method.

You can insert a range of cells into a worksheet using
the Insert method. When you insert a range of
cells into a worksheet, Excel adjusts the values in the

existing cells by moving them either down or to the right to
allow you to insert into the specified location. For example,
if you insert a new row of cells in row 3, Excel shifts the
existing values in row 3 down to row 4. Excel shifts all
remaining values within the worksheet down. If you add a
new column, Excel shifts all existing values right.

It is fairly obvious how the cell values in the worksheet
should shift when you add an entire row or column;
but, when you insert a smaller block of cells you must
instruct Excel how to shift the cells. You use two optional
parameters with the Insert method. You use the Shift
parameter, and assign it one of the

XLInsertShiftDirection constant values, to make sure
the cells shift correctly. Use the xlShiftToRight constant
value to have Excel shift the cell values right when you
insert a new range of cells. Use the xlShiftDown constant
value to shift existing cell values down.

The CopyOrigin parameter accepts only values of True
or False and indicates whether to insert a copy of the last
range of values you placed in the clipboard. You can add
cells to the clipboard either using the Copy and Cut
methods or the Copy and Cut options directly in Excel. If
the value of the parameter is True, Excel only adds the
portion of the copied range that fits the insert range. For
example, if you copy cells A5:B10 and then insert cells
A1:B2, Excel only inserts the values in cells A5:B6 as the
new range values.

INSERT A RANGE

EXCEL PROGRAMMING

198

INSERT A RANGE

123646-X Ch11.F 10/16/01 2:38 PM Page 198

‹ Type Range(“A1:B2”).Insert,
replacing Range(“A1:B2”)
with the range where you
want to add cells.

› Type Shift:=xlShiftDown,
replacing xlShiftDown with
the constant value indicating
how cells should shift.

ˇ Type CopyOrigin:=True.

Á Switch to Excel and run
the macro.

� Excel copies the specified
range of cells and inserts a
copy as a new range in the
worksheet.

DEFINING RANGES 11
You can also use the Insert method to add a specific value to a cell. In
order to insert a value in a cell you need to use the Insert method with
the Characters object. You can insert a string of characters at the
beginning of the characters in a cell, or at any location within the cell.
For example, to insert the string “New String” in cell B1 and replace the
contents you type the following code:

Example:
Range(“B1”).Characters.Insert(“New String”)

If you want to place the new string within the existing string of
characters, you must indicate the character location to place the new
string, and the number of characters to replace at that location. For
example, if you have the string “Excel 2000 Worksheet” you can replace
the “2000” in the string with “2002” using the Insert method. The
following code illustrates how to replace the portion of the string when
the string is located in cell A1:

Example:
Range(“A1”).Characters(7,4).Insert(“2002”)

The Characters object has two parameters, Start and Length. The
Start parameter indicates the number of the character to start the
insert, in this case character 7. The Length parameter indicates the
number of characters to replace in the string.

199

123646-X Ch11.F 10/16/01 2:38 PM Page 199

⁄ Create a new subroutine.

¤ Type Dim NewRange As
Range, replacing NewRange
with the name of the range
of cells.

‹ Type Dim NumColumns
As Integer, replacing
NumColumns with the name
of the variable containing the
number of columns.

› Type Set NewRange =
Range(“B1:D21”), replacing
Range(“B1:D21”) with
the range of cells.

ˇ Type NumColumns =
NewRange.Columns.Count.

You can customize the width of a column using the
ColumnWidth property. With this property, you
specify how wide the specific column displays when

you view the worksheet containing the column in Excel. By
default, Excel assigns a width of 8.43 characters to each
column. Excel bases this width size upon the number of
zeros it can place in the cell using the default font style,
which is the Normal font style. Excel bases this
measurement upon the number of zeros, not characters,
that it can place within the cell and still have them visible.
Because most fonts that you use within Excel are
proportional fonts, the spacing varies based upon each
character. For example, you can always fit more of the letter
“I” in a cell than you can of the letter “M” when working

with a proportional font. When you use a monospaced font,
such as Courier, the width is an actual measurement of the
number of characters that fit in the column because, with
this font, all characters require the same amount of space.
Keep in mind, numeric digits 0 through 9 are all the same
width regardless of whether you use a proportional or
monospaced font.

You can use the ColumnWidth property to determine the
width of the columns in a range. If all columns in the range
have the same width, the width is returned as the number
of characters that can display in each column. If the
columns within the selected range do not have the same
width, a value of Null is returned.

SET THE WIDTH OF COLUMNS IN A RANGE

EXCEL PROGRAMMING

200

SET THE WIDTH OF COLUMNS IN A RANGE

123646-X Ch11.F 10/16/01 2:38 PM Page 200

Á Type For I = 1 To
NumColumns.

Note: See Chapter 6 for more
information on using the For
Next looping statement.

‡ Type NewRange.Columns
(I).ColumnWidth = 15,
replacing 15 with the
desired column width.

° Type Next.

· Switch to Excel and run
the macro.

� Excel resizes the columns
in the specified range to the
new width.

DEFINING RANGES 11
You can also use the Width property to determine the
width of a particular column. Be aware that the Width
property returns the measurement of the column width in
points, unlike the ColumnWidth property, which returns
characters. You typically use a point to reference font sizes,
with 1 point equivalent to 1⁄72 of an inch. For example, the
default font size that Excel uses is typically 10 point.

The Width property is read-only, meaning that you can
only use it to return the width of a column, and not to
modify the width. You can return the Width property of a
column by assigning the value to a variable, as shown in
the following code:

Example:
ColWidth = Column(4).Width

Because the only method for changing the width of the
column is the ColumnWidth property, which uses the
number of characters that fit in a column and not
a point value, you may not use the Width property as
frequently as the ColumnWidth property. The Width
property is valuable if you need to compare the column
width to the row height, because Excel does store the row
height as a point value.

201

123646-X Ch11.F 10/16/01 2:38 PM Page 201

⁄ Create a new subroutine.

¤ Type Dim NewRange As
Range, replacing NewRange
with the name of the range
of cells.

‹ Type Dim NumRows As
Integer, replacing NumRows
with the name of the variable
containing the number
of rows.

› Type Dim AverageHeight
As Long, replacing
AverageHeight with the
variable to contain average
row height.

ˇ Type Set NewRange =
Range(“A1:C14”), replacing
Range(“A1:C14”) with
the range of cells.

Á Type NumRows =
NewRange. Rows.Count.

‡ Type AverageHeight =
NewRange.Height / NumRows.

You can modify the height of rows within a range using
the RowHeight property. When you use this property,
you specify how high the specific row displays when

you view the worksheet containing the row in Excel. By
default, Excel assigns a height of 12.75 points to each row. A
point is a measurement Excel uses with font sizes, with each
point being approximately 1⁄72 of an inch. You measure a font
based upon the height of a capital character, such as W, to
determine the point size. Because the default font size in
Excel is 10 point, typically the default row size of 12.75
points is adequate for displaying text in cells. Of course, if
you specify a larger font size, or if you want the text to wrap
within the cell, you need to specify a larger row size using
the RowHeight property.

You can set the height of the row by assigning a numeric
value to the RowHeight property for the corresponding

object. For example, to change the height of row 2 to 25,
you use the code: Rows(2).RowHeight=25. Keep in
mind, when you use the Rows property without referencing
the corresponding Range object, Excel automatically uses
the current active sheet.

If the row height you specify is not high enough to display
the entire size of the font, the text appears cut off in the
row when you view it in Excel.

You can use the RowHeight property to determine the
height of the rows in a range. If all rows in the range have
the same height, the height is returned as the number of
points. If the rows within the selected range do not have
the same height, a value of Null is returned.

SET THE HEIGHT OF ROWS IN A RANGE

EXCEL PROGRAMMING

202

SET THE HEIGHT OF ROWS IN A RANGE

123646-X Ch11.F 10/16/01 2:38 PM Page 202

° Type For N = 1 To
NumRows.

Note: See Chapter 6 for more
information on using the For
Next looping statement.

· Type NewRange.Rows(N)
.RowHeight = AverageHeight.

‚ Type Next.

— Switch to Excel and run
the macro.

� Excel resizes the rows in
the specified range to be the
same height.

DEFINING RANGES 11

You can use the Height property to determine the total height of a specific range. Excel returns the
height of the range as a point value. The Height property is read-only and you cannot modify it. You
can return the height by assigning the value to a variable, as shown in this code:

The Range object provides two properties that you can use to determine the distance of a range from
the top corner of a worksheet, cell A1. Each property returns a point measurement indicating the
corresponding distance. The Left property measures the distance from the left edge of column A to
the left edge of the specified range. The Top property measures the distance from the top edge of row
1 to the top edge of the specified range.

203

TYPE THIS:

HeightofRange = NewRange.Height

RESULT:

The code assigns the total height of the rows
specified by the NewRange object to the
HeightofRange variable. As in the steps, you
can take the value returned to the
HeightofRange variable and divide it by the
number of rows in the range to create an
average height for each row.

123646-X Ch11.F 10/16/01 2:38 PM Page 203

⁄ Create a new subroutine. ¤ Type Dim RangeVar As
Range, replacing RangeVar
with the name of the range
variable.

‹ Type Set RangeVar =
Columns(1), replacing
Columns(1) with the
range containing values
to separate.

CONVERT A COLUMN OF TEXT
INTO MULTIPLE COLUMNS

EXCEL PROGRAMMING

204

CONVERT A COLUMN OF TEXT INTO MULTIPLE COLUMNS

You can break a column of text into multiple columns
using the TextToColumns method. For example, if
you have a list that contains both the first and last

names in one column, you use TextToColumns to break
that list into two different columns.

You use the TextToColumns with the Range object
containing the columns to parse into multiple columns.
This method provides several different optional parameters
to specify how to separate the text, including
Destination, DataType, TextQualifier,
ConsecutiveDelimiter, Tab, Semicolon, Comma,
Space, Other, OtherChar, FieldInfo,
DecimalSeparator, ThousandsSeparator, and
TrailingMinusNumbers.

You use the Destination parameter to specify the range
where you want to place the results. If the destination
Range object contains more than one cell, Excel uses the
top left cell in the range as the initial cell. For the
DataType parameter, specify a constant value of
xlDelimited to break the text based upon a delimiter
value. Use xlFixedWidth if the text is a fixed width.

Use the TextQualifier constants of
xlTextQualifierDoubleQuote,
xlTextQualifierNone, or
xlTextQualifierSingleQuote to indicate the text
qualifier character.

The delimiter is a character that indicates a separation
between strings, such as a comma or space. Specify a value
of True for the ConsecutiveDelimiter parameter to
have consecutive delimiters treated as one. For the Tab,
Semicolon, Comma, Space, and Other parameters specify
a value of True for the delimiter you use in the selected
range. If you specify Other as the delimiter, you must type
a value for the OtherChar parameter indicating the
delimiter character.

The FileInfo parameter contains information for parsing
individual columns in the range with the first element being
the column number and the second one of the
XlColumnDataType constants discussed in Appendix A.

Specify the character used to separate decimals as the
DecimalSeparator parameter and the thousands
separator as the ThousandsSeparator parameter value.

123646-X Ch11.F 10/16/01 2:38 PM Page 204

› Type
RangeVar.TextToColumns.

ˇ Type Destination
:=Range(“B1”), replacing
Range(“B1”) with the
location to place the cells.

Á Type
DataType:=xlDelimited.

‡ Type Comma:=True.

° Switch to Excel and run
the macro.

� Excel breaks the contents
of the specified column into
two separate columns.

DEFINING RANGES 11
Excel provides the Parse method that you can use to
separate data values in one column into multiple columns.
The method works well when you have string data that is all
the same length, such as phone numbers. With the Parse
method, you specify how the strings in each cell should
break and Excel applies that format to each cell.

There are two optional parameters for the Parse method.
The first parameter, ParseLine, is a string containing left
and right brackets indicating where the cells should split.
For example, [xxxx] [xxxx] breaks each string so that the first
four characters are placed in the first column and the
second four characters are placed in the second column.
Any characters outside those characters are ignored and not
moved to a new column. If the string is “Alphabetical”,
with this ParseLine parameter, Excel places the first four
characters Alph in the first column and the second four
characters, abet in the second column. The remaining
characters in the string, ical, are ignored because they are
not specified as part of the ParseLine value.

The second parameter, Destination, specifies the range
where the parsed data is placed. If you specify a range of
more than one cell, Excel uses the upper left corner of the
range as the first cell.

205

123646-X Ch11.F 10/16/01 2:38 PM Page 205

⁄ Create a new subroutine.

¤ Type Dim Range1 As
Range, replacing Range1
with the name of the first
range.

‹ Type Dim Range2 As
Range, replacing Range2
with the name of the second
range.

› Type Dim NewRange As
Range, replacing NewRange
with the name of the
combined range.

ˇ Type Set Range1 =
Range(“A1:C13”), replacing
Range(“A1:C13”) with a
reference to the first range.

Á Type Set Range2 =
Range(“B5:D15”), replacing
Range(“B5:D15”) with a
reference to the second range.

You can use the Intersect method to determine
where multiple ranges intersect on a worksheet. A
multiple area range contains more than one block of

cells that may or may not be connected. You use the
Intersect method to create a Range object containing
the cells that are common between two ranges. For
example, if you have the ranges A1 through C5 and C1
through E5, the Intersect method returns the range
C1:C5 because those are the cells that are common to both
ranges. If there are no cells in common between the
specified ranges, the Intersect method returns an empty
range.

When you use the Intersect method, you can assign any
number of parameter values, as long as you specify at least
two different ranges. Each parameter value must specify a
range of cells. You can specify the ranges you assign to the

Intersect method using any option that returns a valid
Range object, such as the Range property or the Cells
property. See the sections “Using the Range Property” and
“Using the Cells Property” for more information on the
Range and Cells properties.

Because you must declare the variable to which you assign
the multi-area range as a Range object, you need to use the
Set statement as part of the assignment statement. You
must use the Set statement whenever you assign an object
to a variable. See Chapter 4 for more information on
assigning objects. Keep in mind, however, that when you
assign an intersecting range to a range object variable, only
the cells within the intersection of the range are assigned to
the variable, creating a new range that represents the
intersection of the original ranges.

FIND THE INTERSECTION OF TWO RANGES

EXCEL PROGRAMMING

206

FIND THE INTERSECTION OF TWO RANGES

123646-X Ch11.F 10/16/01 2:38 PM Page 206

‡ Type Set NewRange =
Intersect(Range1, Range2).

° Type additional VBA
code to work with the new
combined range of cells.

· Switch to Excel and run
the macro.

� The macro finds the cells
that intersect both ranges.

DEFINING RANGES 11
You can use one of the different Clear methods to clear the contents of a cell
or range of cells within your worksheet. The Clear method clears the entire
contents, including cell values, formatting, and formulas, from the specified
cells. You specify this method using the following syntax:

Example:
RangeVar.Clear

Whatever cells the RangeVar references are cleared of all contents. You can use
the ClearFormats method to clear all formatting from the specified range. All
cell values and formulas remain in the cells. When you use this method, the
contents of the specified range display using default formatting options. You
indicate this method using the following syntax:

Example:
RangeVar.ClearFormats

Finally, you can clear the cell values and formulas from a range of cells using the
ClearContents method. This method clears everything with the exception of
the formatting that you applied to the cells. After using this method, you can
add new values to any cells in the range and Excel applies the original
formatting. The syntax for this method is similar to the other ones:

Example:
RangeVar.ClearContents

207

123646-X Ch11.F 10/16/01 2:39 PM Page 207

Some of the most commonly used commands with any
Microsoft Windows application are the Cut, Copy, and
Paste commands. In fact, people use these commands

so frequently that most applications have toolbar buttons
for accessing them. You can also cut and paste values within
a worksheet directly using VBA and the Cut method
associated with the Range object.

The Cut method provides the ability to cut the values from
a specific range and paste them in either the Windows
Clipboard or a specific destination. The Cut method has
one optional parameter, Destination, that you can use if
you want to specify where you want to paste the cut values.
If you do not specify a Destination parameter value, the
cut range of values paste into the Windows Clipboard. If
you use the Destination parameter, you must specify
another Range object as the location for the values to
paste. The following code illustrates the use of the Cut

method to paste the range in cells A1:A5: CutRange.Cut
Destination:=Range(“A1:A5”).

Keep in mind that you must make the range specified for
CutRange variable and the destination range the same size,
or Excel returns an error. If you do not know the size of the
cut range of cells, you should specify a single cell as the
destination range, for example: CutRange.Cut
Destination:=Range(“A1”)

If you specify only one cell, Excel makes it the initial cell
and pastes the values in cells starting at that location. In
other words, if pasting the contents requires cells A1:B4,
Excel automatically uses those cells.

Keep in mind, however, that when you use the Cut method,
the contents are removed from the specified cells and
pasted into the new cells. The original cells appear as empty
on the worksheet.

CUT AND PASTE RANGES OF CELLS

208

CUT AND PASTE RANGES OF CELLS

EXCEL PROGRAMMING

⁄ Create a new subroutine.

Note: See Chapter 3 for information
on creating subroutines.

¤ Type Dim CutRange As
Range, replacing CutRange
with the variable containing
the range to cut.

‹ Type Set CutRange =
Range(“B1:C5”), replacing
Range(“B1:C5”) with the
range to cut.

133646-X Ch12.F 10/16/01 2:39 PM Page 208

WORKING WITH CELLS 12

209

› Type CutRange.Cut
Destination:=Range(“A1”),
replacing Range(“A1”)
with the range where the cut
cell values should be pasted.

ˇ Type additional VBA code
for working with pasted
values.

Á Switch to Excel and run
the macro.

� The specified range of cells
is cut and pasted in the new
location.

When you paste values into cells, the cells are not always properly sized to hold
the new values. If the values that you paste in the new cells are numeric and the
cells are not wide enough for the entire number, Excel displays number signs, ####,
indicating the cell is not properly sized. Excel provides some formatting options
you can use with the Range object to resize cells so that values fit appropriately.

To ensure that the values pasted in the cells display properly, you can use the
ShrinkToFit property. When you use this property, the font size of the text in a
cell reduces to ensure that the entire contents of the cell display when you view
the worksheet. You set the ShrinkToFit property by assigning a value of True,
as show in this code:

Example:
CurrentRange.ShrinkToFit=True

The other property that you can use is the WrapText property. Assigning a value
of True to this property causes text to wrap within the cell so that it all displays on
the worksheet.

Example:
CurrentRange.WrapText=True

You can also use the AutoFit method to resize the rows or columns in a range to
allow the contents of all cells to display. To use the AutoFit method you type the
following:

Example:
CurrentRange.Columns.AutoFit

133646-X Ch12.F 10/16/01 2:39 PM Page 209

⁄ Create a new subroutine.

Note: See Chapter 3 for information
on creating subroutines.

¤ Type Dim CopyRange As
Range, replacing CopyRange
with the variable containing
the range to copy.

‹ Type Set CopyRange =
Range(“E1:F5”), replacing
Range(“E1:F5”) with the
range to copy.

You can copy and paste cell ranges within a worksheet
using the Copy method. The Copy method is
essentially the same as the Copy and Paste commands

within Excel, except that in Excel you are required to use
two commands; that is, you first copy the desired range and
move to the appropriate location, and then select the Paste
command.

The Copy method associated with the Range object
provides the ability to copy the values from a specific range
and paste the values either in the Windows Clipboard or a
specific destination. The Copy method has one optional
parameter, Destination, that you can use if you want to
specify where the copied values should be pasted. If you do
not specify a Destination parameter value, the copied
range of values is pasted in the Windows Clipboard. If you
use the Destination parameter, you must specify another
Range object as the location for the values to be pasted.
The following code illustrates the use of the Copy method

to paste the range in cells A1:A5: CopyRange.Copy
Destination:=Range(“A1:A5”)

Keep in mind that the range specified from the CutRange
variable and the destination range must be the same size, or
Excel returns an error.

If you do not know the size of the copied range of cells, you
can specify a single cell as the destination range: CopyRange.
Copy Destination:=Range(“A1”)

If you specify only one cell, Excel uses the specified cell as
the initial cell and pastes the values in cells starting at that
location. In other words, if pasting the contents requires
cells A1:B4, Excel automatically uses those cells.

When you use the Copy method, the contents remain in the
original cells, and a copy of those values is pasted in the
new cells.

COPY AND PASTE RANGES OF CELLS

EXCEL PROGRAMMING

210

COPY AND PASTE A RANGE OF CELLS

133646-X Ch12.F 10/16/01 2:39 PM Page 210

› Type CopyRange.Copy
Destination:=Range(“A1:B5”),
replacing Range(“A1:B5”)
with the range where the
copied cell values should
be pasted.

ˇ Type additional VBA code
for working with pasted
values.

Á Switch to Excel and run
the macro.

� The specified range of cells
is copied and pasted in the
new location.

WORKING WITH CELLS 12

INDEX COLOR

1 Black

2 White

3 Red

4 Green

5 Blue

6 Yellow

7 Fuchsia

8 Light Blue

9 Brown

10 Forest Green

11 Navy Blue

12 Yellow-Brown

13 Maroon

14 Blue-Green

15 Light Gray

16 Gray

211

You can customize the background color of a
cell by using the ColorIndex property with
the Interior object. The Interior object is a
child-object of the Range object. You set the
cell background color by assigning a color index
value to the ColorIndex property. For example,
the index value of 5 makes the cells associated
with the range display with a blue background.
Columns(1).Interior.ColorIndex = 5

You can assign an index value of 1 to 56 to the
ColorIndex parameter, although there are only
16 different colors available, as outlined in the
table.

133646-X Ch12.F 10/16/01 2:39 PM Page 211

⁄ Create a new subroutine.

Note: See Chapter 3 for information
on creating subroutines.

¤ Type For N = 2 To 6,
replacing 2 and 6 with the
numbers corresponding to
the columns to add.

‹ Type Range(Cells(3,N),Cells(16,N)).Copy,
replacing Cells(3,N),Cells(16,N)
with the range to copy.

You can customize how values paste into a
worksheet from the Windows Clipboard by using
the PasteSpecial method. You can use the

PasteSpecial method with values that have been added
to the Windows Clipboard using the Cut or Copy methods,
or even values placed there directly from Excel. With the
PasteSpecial method, you can customize how the cell
contents are pasted into the new range by only pasting
the cell formats or even by adding the cell values to the
contents of the cells from where you are pasting. The
PasteSpecial method is essentially the same as using
Edit➪PasteSpecial in Excel.

Typically when you use the Cut or Copy method, you
indicate where to place the cell values and Excel places the
values in that location instead of in the clipboard. If you
plan to use the PasteSpecial method with a Cut or
Copy method, you should not use the Destination
parameter with either method.

The PasteSpecial method has four different optional
parameters: Paste, Operation, SkipBlanks, and
Transpose.

The Paste parameter indicates how you want to paste the
information into the new range. By default, Excel uses the
xlPasteAll constant value for this parameter, which
pastes the entire contents of the copied or cut cells into the
new range.

The Operation parameter enables you to perform a
mathematical operation, such as adding the current value of
a cell to the pasted value. The default constant value used
by Excel is xlPasteSpecialOperationNone, which
does not perform any mathematical operatons.

Set the SkipBlanks parameter to True to ignore blank
cells in the clipboard and avoid having them pasted into the
new cells. If selected, existing values remain in cells that
would have received blank values.

If you want to transpose the data values from rows to
columns or vice versa, specify a value of True for the
Transpose parameter.

CUSTOM PASTE VALUES IN CELLS

EXCEL PROGRAMMING

212

CUSTOM PASTE VALUES IN CELLS

133646-X Ch12.F 10/16/01 2:39 PM Page 212

› Type Range(Cells(3, N + 1),
Cells(16, N + 1)).PasteSpecial,
replacing Cells(3, N +
1), Cells(16, N + 1)
with the range where the
copied cell values should
be pasted.

ˇ Type Operation:=xlPaste
SpecialOperationAdd.

Á Type Next.

‡ Switch to Excel and run
the macro.

� The specified range of cells
is copied and added to the
new range of cells.

WORKING WITH CELLS 12
The Paste parameter requires one of the
XlPasteType constant values that are

described in the following table.

The Operation parameter requires one of the
following xlPasteSpecialOperation
constant values:
xlPasteSpecialOperationAdd,
xlPasteSpecialOperationDivide,

xlPasteSpecialOperationMultiply,
xlPasteSpecialOperationNone, or
xlPasteSpecialOperationSubtract.

213

XLPASTETYPE CONSTANT DESCRIPTION

xlPasteAll Default value. Pastes the entire contents of the cells.

xlPasteAllExceptBorders Pastes everything but border settings.

xlPasteColumnWidths Only sets the column widths to match.

xlPasteComments Only pastes the cell comments.

xlPasteFormats Only sets the cell formatting options.

xlPasteFormulas Only pastes the formulas.

xlPasteFormulasAndNumberFormats Pastes the formulas and number formats.

xlPasteValidation Sets the cell validation.

xlPasteValues Only pastes the cell values.

xlPasteValuesAndNumberFormats Pastes the cell values and number formats.

133646-X Ch12.F 10/16/01 2:39 PM Page 213

⁄ Create a new subroutine.

Note: See Chapter 3 for information
on creating subroutines.

¤ Type Dim SalesLocal As
String, replacing SalesLocal
with the name of the string
variable.

‹ Type For N = 3 To 16,
replacing 3 and 16 with
the numbers indicating
the range of cells.

› Type SalesLocal =
Cells(N,1).Text, replacing
Cells(N,1) with the
range containing the text
string for the comment.

ˇ Type Cells(N,2).ClearComments,
replacing Cells(N,2) with the
reference to the cell to clear.

You can add comments to any cell in a worksheet using
the AddComment method with the Range object.
Comments are great methods for adding extra

information about the value in a cell, such as how it was
calculated, who provided the information, and so on. Using
the AddComment method is basically the same as clicking
Insert➪Comment within Excel. The biggest difference is that
by default when you create a comment in Excel, the name
of the person creating the comment is always added to the
top of the comment. When you create a comment using the
AddComment method, only the text you provide is added to
the comment.

When you add a comment to a cell, Excel typically places a
small red triangle in the upper-right corner of the cell to
indicate that the cell contains a comment. You can view the
comment in the cell by dragging the cursor across the cell.

To add a comment to a cell, you need to specify the range
of the cell to contain the comment, the AddComment

method, and the comment to add to the cell for example:
Cells(3,3).AddComment “Sample Comment Text”

You can only place a comment in one cell at a time using
the AddComment method. If you want to add the same
comment to multiple cells, you can use a looping
statement, such as a For Next loop to cycle through the
range of cells to receive the comment.

If you attempt to add a comment to a cell that already
contains a comment, Excel returns an error message. To
avoid potential errors, you can use the ClearComments
method to clear any existing comments so that comments
can be added to the specified cell. When you use this
method, if the specified cell does not contain any
comments the ClearComments method is ignored. You
use the method as shown in this example: Cells(3,3).
ClearComments

ADD COMMENTS TO A CELL

EXCEL PROGRAMMING

214

ADD COMMENTS TO A CELL

133646-X Ch12.F 10/16/01 2:39 PM Page 214

Á Type Cells(N, 2).AddComment,
replacing Cells(N, 2) with
the reference to the cell to
receive comments.

‡ Type (“Cell Comment”
& SalesLocal).

° Type Next.

· Switch to Excel and run
the macro.

� The comments are
added to the range of cells.
The comment displays when
you drag you cursor across
the cell.

WORKING WITH CELLS 12
When you add a comment to a cell, Excel creates
a Comment object for that cell. The Comment
object is actually part of the Comments
collection, which contains all comments within a
particular range of cells. You can reference
particular comments in a worksheet using the
Comments collection and an index value. For
example, to access the second comment in a
worksheet you would type the following:

Example:
SecondComment=ActiveSheet.Comments(2).Text

You can also use the properties of the Comment
object to customize you comments. If you want
comments to automatically display on the
worksheet, you need to set the Visible
property as shown below.

Example:
Cells(1,1).Comment.Visible = True

This code makes the comment in cell A1 display
all the time on the worksheet.

You may be want to only delete comments that
were created by a particular author. The Comment
object provides an Author property that you can
use to return the author of a comment for a cell.
Remember, Excel adds the author when comments
are created. To delete the comments created by a
particular individual, you type something similar to
the following:

Example:
CountComments = ActiveSheet.Comments.Count

For N = 1 To CountComments

If Comment(N).Author = “John” Then

Comment(N).Delete

End If

Next

215

133646-X Ch12.F 10/16/01 2:39 PM Page 215

⁄ Create a new subroutine. Note: See Chapter 3 for information
on creating subroutines.

¤ Type Range(“A1:A2”).AutoFill,
replacing Range(“A1:A2”)
with the range containing
source cells.

When you want to add a series of values to a range
of cells, such as consecutive dates, you can use
the AutoFill method to have Excel

automatically perform the task for you.

When you perform an autofill, Excel uses the values in the
source range to determine the type of values to add to cells
in the destination. For example, if the source range is A1
and A2 and the cells contain the values Jan and Feb
respectively, Excel fills the cells in the source range with the
months of the year starting with Mar.

With the AutoFill method there are two parameters
available for use. The first parameter, Destination, is
required. This parameter must contain a Range object
indicating which cells to fill. The Destination range value
also needs to include the source range. For example, if the
source range is A1 and A2, these cells must be included in
the destination range, as shown: Range(“A1:A2”).
AutoFill Destination:=Range(“A1:A12”)

This code uses the values in cells A1 and A2 to determine the
pattern for adding values to the cells in the destination. If the
cells are numeric, Excel finds a numeric pattern and uses that
for the destination range.

If you want to specify the pattern for adding values to the
destination, you need to include the Type parameter. The
Type parameter accepts one of the XlAutoFillType
constants indicating the type of fill. The default value
xlFillDefault instructs Excel to determine a pattern
based upon the source cell values. If your cells contain date
values, you can use xlFillDays, xlFillWeekdays,
xlFillMonths, or xlFillYears to have the cells
increment by the appropriate month value. For example, if
your source cell contains the value 1/15/2001 and you
select a Fill value of xlFillMonths, the source cells
increment by one month.

AUTOMATICALLY FILL A RANGE OF CELLS

EXCEL PROGRAMMING

216

AUTOMATICALLY FILL A RANGE OF CELLS

133646-X Ch12.F 10/16/01 2:39 PM Page 216

‹ Type
Destination:=Range(“A1:A10”),
replacing Range(“A1:A10”)
with the range of cells to fill.

› Type Type:=xlFillMonths,
replacing xlFillMonths
with the constant specifying
the type of fill.

ˇ Switch to Excel and run
the macro.

� The specified cells are
automatically filled.

WORKING WITH CELLS 12
The XlAutoFillType constant values specify
how Excel fills the range of cells for the
Destination parameter. The following table

describes the results of each of the
xlAutoFillType constant values.

CONSTANT DESCRIPTION

xlFillDays Increments the values by days. If only one date is specified, increments one day. If
multiple dates are specified for the source, uses those dates to determine increment
value.

xlFillFormats Applies the formats of the source cells to the destination cells

xlFillSeries Creates a series based upon contents of source range

xlFillWeekdays Increments based on weekdays omitting dates that fall on Saturday or Sunday

xlGrowthTrend Fills cells based on a growth trend

xlFillCopy Copies formatting of source and increments based on source values

xlFillDefault Default value. Excel determines fill type based upon values in source cells

xlFillMonths Increments the month portion of the date

xlFillValues Increments values based upon values in source cells

xlFillYears Increments the year portion of the date

xlLinearTrend Fills cells based on a linear trend

217

133646-X Ch12.F 10/16/01 2:39 PM Page 217

⁄ Create a new subroutine.

Note: See Chapter 3 for information
on creating subroutines.

¤ Type Dim WS As Variant,
replacing WS with the variable
to contain worksheet range.

‹ Type WS = Array(“Sheet1”, “Sheet3”,
“Sheet5”), replacing “Sheet1”,
“Sheet3”, “Sheet5” with
the worksheets to receive the
cell values.

You can copy a range of cells and place it in the
same location on multiple sheets with the
FillAcrossSheets method. When you use this

method, Excel copies the specified cells to each worksheet
you specify. You can copy everything in the range of cells,
just the values in the cells, or only the formatting.

When you use this method, you call it by indicating the
range of worksheets where Excel should copy the cells
followed by the FillAcrossSheets method. The range
of worksheets must exist within the current workbook. Also,
you must specify all of the worksheets at once, such as the
Worksheets collection object to copy to all worksheets in
the workbook. If you specify individual sheets within the
workbook, the worksheet containing the range must be
part of the range. The method includes two different
parameters, Range and Fill, as illustrated in the following
line of code: Worksheets.FillAcrossSheets(Range, Fill)

The first parameter, Range, is required. The Range
parameter must specify the range of cells to copy to the

other worksheets. You can specify the range of cells using
any valid range statement. See Chapter 11 for more
information on specifying ranges.

The second parameter, Fill, is optional. You can use this
parameter to indicate how the range should copy. The Fill
parameter accepts any one of the three XlFillWith
constant values. If you do not specify a Fill parameter
value, Excel uses the default value of xlFillWithAll
which instructs Excel to copy the entire contents of the
range of cells, including the formatting. If you only want to
copy the cell values use the xlFillWithContents
constant value. This constant value instructs Excel to copy
everything but the cell formatting. On the other hand, if you
only want to copy the formatting of the range of cells,
specify the constant value of xlFillWithFormats. When
you do this, Excel ignores the entire contents of the cell and
only copies and applies the formatting.

COPY A RANGE TO MULTIPLE SHEETS
EXCEL PROGRAMMING

218

COPY A RANGE TO MULTIPLE SHEETS

133646-X Ch12.F 10/16/01 2:39 PM Page 218

› Type Sheets(WS).Fill
AcrossSheets.

ˇ Type Worksheets(“Sheet”).
Range(“A1:G1”), replacing
Worksheets(“Sheet”).
Range(“A1:G1”) with the
range containing the values
to copy.

Á Type Type:=xlFill
WithContents, replacing
xlFillWithContents
with the constant value
indicating how to copy
values.

‡ Switch to Excel and run
the macro.

� The cell values are copied
to each worksheet in the
specified range.

WORKING WITH CELLS 12
You can fill a range of cells in a specific direction within a worksheet
using one of the Fill methods. For example, you may want to fill
across a worksheet with the first value in the left corner of the range.
VBA offers four Range object methods for filling in a specific
direction: FillUp, FillDown, FillRight, and FillLeft.

You can use the FillUp method to fill a range of cells with the
value specified in the last cell of the range. For example, if you have
the range A1:A10 and apply the FillUp method, as illlustrated, the
value in cell A10 copies and pastes in cells A1:A9.

Example:
Range(“A1:A10”).FillUp

The FillDown method works just opposite of the FillUp method.
This method takes the value in the top of the range and copies it to
all other cells.

You can use the FillRight method to fill across rows. If you use
this method with the range A1:G1, Excel takes the value in cell E1
and pastes it into cells B1 through G1. The FillLeft method works
the opposite of the FillRight method. This method takes the
value in the last cell on the right, and copies it to all cells in the
remaining portion of the range.

219

133646-X Ch12.F 10/16/01 2:39 PM Page 219

⁄ Create a new subroutine. Note: See Chapter 3 for information
on creating subroutines.

¤ Type Range(“A2:G2”).BorderAround,
replacing Range(“A2:G2”) with the
cells where the border should be placed.

PLACE BORDERS AROUND A RANGE OF CELLS
EXCEL PROGRAMMING

220

You can use border around cells on your worksheet to
make specific information stand out. For example,
when a worksheet contains a row of cells that totals

the values in the other cells of the worksheet, the total row
is typically highlighted in some fashion to make it more
noticeable. One common method is to place a border
around those cells.

You can add borders to a range of cells using the
BorderAround method. When you apply a border to a
range of cells, the border outlines the entire range of cells,
not each individual cell. When you use this method, it
provides different optional parameters that enable you to set
the Color, LineStyle, and Weight properties for the
Borders collection object associated with the range of cells.

Use the LineStyle parameter to specify the line style for
the border around a range. You can specify any one of the
XlLineStyle constant values. Excel uses the default value
of xlContinuous to draw a continuous line around the
range of cells, if you do not specify a LineStyle
parameter value.

You can use the Weight parameter to specify the width of
the line to border the range of cells. You can specify any
one of the XlBorderWeight constant values. If you do not
specify a Weight parameter value, Excel uses a default
value of xlThin, which draws a thin line around the range
of cells.

Use the ColorIndex parameter to specify the border color
as an index value to the current color palette specified as a
value between 1 and 64 or as one of the XlColorIndex
constant values. Specify xlColorIndexAutomatic to use
the automatic default line color. You can specify a value of
xlColorIndexNone to not use the current color palette.

If you want to specify an RGB color value for the border,
use the Color parameter and assign it an RGB color with
the RGB function. The RGB color value ensures that you
have the same color, regardless of the loaded color palette.
With the RGB function, you need to specify three values
from 0 to 255 indicating the red, green, and blue
component values.

PLACE BORDERS AROUND A RANGE OF CELLS

133646-X Ch12.F 10/16/01 2:39 PM Page 220

‹ Type LineStyle:=xlDouble,
replacing xlDouble with
the XlLineStyle constant
for the desired line style.

› Type Color:=RGB(250, 120,
220), replacing 250, 120, 220
with the Red, Green, and
Blue values for the desired
line color.

ˇ Type Weight:=xlThick,
replacing xlThick with the
appropriate XlBorderWeight
constant.

Á Switch to Excel and run
the macro.

� Excel draws a border
around the specified cells.

WORKING WITH CELLS 12

You use the XlLineStyle
constant values, outlined in the
table, to specify the type of line
to draw as the border for the
range of cells.

You use the XlBorderWeight
constant values, xlHairline,
xlMedium, xlThick, and
xlThin, to specify the width of
the line used to draw the
border for the range of cells.
The type of line drawn is based
upon the XlLineStyle
parameter value.

CONSTANT DESCRIPTION

xlContinuous Default value. Draws a
continuous line around the range
of cells.

xlDash Draws a dashed line around the
range of cells.

xlDashDot Draws a broken line using the
pattern dash and then dot.

xlDashDotDot Draws a broken line using the
pattern dash, dash, and dot.

xlDot Draws a dotted line around the
range of cells.

xlDouble Draws a double continuous line
around the range of cells.

xlLineStyleNone Does not modify the line style.

xlSlantDashDot Draws a broken line in a dash
dot pattern using a slanted line.

221

133646-X Ch12.F 10/16/01 2:39 PM Page 221

⁄ Create a new subroutine. Note: See Chapter 3 for information
on creating subroutines.

¤ Type Range(“A1:G16”).Find,
replacing Range(“A1:G16”)
with the range of cells to
search.

‹ Type What:=”Boise”,
replacing Boise with the
string you want to search for.

FIND SPECIFIC CELL VALUES

EXCEL PROGRAMMING

222

You can use the Find method to search for specific
values within a range of cells. This method works
essentially the same as the Edit➪Find command in

Excel. The Find method has several different parameters of
which only the What parameter is required. You must
specify the string for which you want to search as the value
of the What parameter.

If you want to start searching from a specific cell, use the
After parameter to reference the cell before where you
want to start searching. If omitted, Excel starts the search
with the top left cell in the range.

For the LookIn parameter, specify one of the XlFindLookIn
constants to indicate what part of the cell to search. Type
xlValues to look at cell values, xlComments to search
attached comments, or xlFormulas to look at formulas.

You specify a value of xlWhole for the LookAt parameter
to require Excel to match the entire contents of a cell. You
specify xlPart if Excel should match a cell that contains a
search string as part of the cell value.

Specify the appropriate XlSearchOrder constant to
indicate whether to search by rows or columns xlByRows
searches by rows and xlByColumns searches by columns.

You use the SearchDirection parameter to indicate the
direction to search. A value of xlNext finds the next
matching value in the worksheet. A value of xlPrevious
finds the previous match.

Type a value of True for the MatchCase parameter if Excel
should only match occurences with the same case, all
uppercase, all lowercase, and so on. If you are using
double-byte language support, type a value of True for
the MatchByte parameter to only match double-byte
characters with double-byte characters.

Using the SearchFormat parameter is a little more
complex. If you assign this parameter a value of True,
you need to specify the format for the Application.
FindFormat object.

FIND SPECIFIC CELL VALUES

133646-X Ch12.F 10/16/01 2:39 PM Page 222

› Type LookAt:=xlWhole,
replacing xlWhole with the
constant indicating part of
string to match.

ˇ Type LookIn:=xlValues,
replacing xlValues with
the XlFindLookIn constant
value indicating the part of
cell to search.

Á Type
SearchOrder:=xlByColumns.

‡ Type .Activate to activate
the cell.

° Switch to Excel and run
the macro.

� The first cell containing the
search text is activated.

WORKING WITH CELLS 12
Excel remembers the values specified for the
LookIn, LookAt, SearchOrder, and
MatchByte parameters. If you run a search
again without these parameter values, Excel uses
the settings from the previous Find or Replace
method. These values are also modified if you
run a Find or Replace from within Excel. To
avoid running searches that have unexpected
values set, you should set these values each time
you run the method.

You can continue a search and find the next
match using the FindNext method. In order to
use this method you must specify an After
parameter indicating the cell from which to start
the next search. All other parameter values are
used from the previous Find method. You use
the FindNext method as illustrated:

Example:
SearchRange.FindNext(After)

Instead of finding the next occurrence of a string,
you can find a previous occurrence using the
FindPrevious method. This method searches
backward from the specified location and finds a
previous occurrence of a string. The
FindPrevious requires one parameter, Before,
which indicates the cell where the search should
begin. You use the FindPrevious method as
illustrated:

Example:
SearchRange.FindPrevious(Before)

223

133646-X Ch12.F 10/16/01 2:39 PM Page 223

⁄ Create a new subroutine.

Note: See Chapter 3 for information
on creating subroutines.

¤ Type Application.Replace
Format.Font.FontStyle = “Bold
Italic”, replacing “Bold
Italic” with the font style
to use for the replacement
text.

‹ Type Range(“A1:G16”).Replace,
replacing Range(“A1:G16”)
with the range to search.

You can use the Replace method to search for and
replace specific values within a specific range of cells.
This method works essentially the same as the Edit➪

Replace command in Excel.

The Replace method has several different parameters,
with only two of them being required. You must specify the
string for which you want to search as the value of the What
parameter. You must also specify a replacement string as the
value of the Replacement parameter. All remaining
parameters, are optional.

You specify a value of xlWhole for the LookAt parameter
to have Excel require that the What value match the entire
contents of a cell before replacement. Specify xlPart if
Excel should replace a cell that contains search string as
part of the cell value.

Specify the appropriate XlSearchOrder constant to
indicate whether to search by rows or columns. The

constant xlByRows searches by rows and the constant
xlByColumns searches by columns.

Type a value of True for the MatchCase parameter if Excel
should only match occurrences with the same case, all
uppercase, all lowercase, and so on. If you are using
double-byte language support, type a value of True for the
MatchByte parameter to only match double-byte
characters with double-byte characters.

Using the SearchFormat and ReplaceFormat
parameters is a little more complex. If either of these
parameters has a value of True, you must specify the
format. For the SearchFormat parameter, you specify the
format properties for the Application.FindFormat
object. With the ReplaceFormat parameter you specify
the Application.ReplaceFormat properties. For
example, to replace the text with a bold font, you can
specify the following code above your Replace method:
Application.ReplaceFormat.Font.FontStyle = “Bold”

FIND AND REPLACE VALUES IN CELLS

EXCEL PROGRAMMING

224

FIND AND REPLACE VALUES IN CELLS

133646-X Ch12.F 10/16/01 2:39 PM Page 224

› Type What:=”Seattle”,
replacing “Seattle” with
the string to find.

ˇ Type Replacement:=”San
Francisco”, replacing “San
Francisco” with the
replacement string.

Á Type ReplaceFormat:=True.

‡ Switch to Excel and run
the macro.

� The specified text is
replaced and reformatted
as specified.

WORKING WITH CELLS 12
When you specify a value of True for the
SearchFormat parameter and the ReplaceFormat
parameter, Excel looks for the search and
replacement format settings. If you want to use
formatting as part of the search criteria, you need to
specify the format settings for the FindFormat
property of the Application object. Whereas, with
the ReplaceFormat parameter need to specify the
replacement format settings using the
ReplaceFormat property. Typically these settings
are specified at the top of the procedure, before the
code that sets the associated parameter. You use
these properties to set the Font object properties
for searching and replacing text. Typically you will
use the With statement to set the property values.
For example, to set replacement text properties you
would type code similar to the following:

Example:
With Application.ReplaceFormat.Font

.Name = “Arial”

.FontStyle = “Bold”

.Size = 12

End With

225

133646-X Ch12.F 10/16/01 2:39 PM Page 225

You can use dialog boxes to request specific
information from users by providing them an interface
with your VBA code. Every Microsoft Windows

application utilizes dialog boxes to gather information from
the user, and Excel is no exception. As an example, you

frequently interact with the Open dialog box in Excel to
select a file to open. VBA provides two standard dialog
boxes: MsgBox and InputBox. See Chapter 7 for more
information on working with these functions.

USERFORM BASICS

EXCEL PROGRAMMING

PARTS OF THE VISUAL BASIC EDITOR TOOLBOX

The Visual Basic Editor provides the option of creating
custom dialog boxes that you can use with your Excel
macros. These custom dialog boxes are referred to as

UserForms within the Visual Basic Editor. When you
create a UserForm, you design it using the various
controls available on the Toolbox.

ARROW BUTTON LABEL BUTTON TEXTBOX BUTTON COMBOBOX BUTTON

CHECKBOX BUTTON

OPTION BUTTON

LISTBOX BUTTON

TOGGLE BUTTON

FRAME BUTTON

COMMAND BUTTON

TABSTRIP BUTTON

MULTIPAGE BUTTON SCROLLBAR BUTTON SPINBUTTON IMAGE BUTTON REFEDIT BUTTON

226

143646-X Ch13.F 10/16/01 2:39 PM Page 226

VISUAL BASIC EDITOR TOOLBOX

The Visual Basic Editor Toolbox only displays when you
select a UserForm in the Visual Basic Editor. The
toolbox contains all of the controls that you can add to
your custom UserForm. See the section “Create a
Custom Dialog Box” for more information about
adding Toolbox controls.

The Toolbox contains several different standard
controls that you can add to a userform. You can also
create custom controls and add them to the Toolbox.
See the section “Create Custom Controls” for more
information on adding custom controls.

CUSTOMIZING DIALOG BOXES, MENUS, AND TOOLBARS 13

227

Label

For adding text to a UserForm. Not designed to interact
with the UserForm, you add labels for informational
purposes only.

TextBox

Enables the user to type text.

ComboBox

Enables a user to either click an item from the list or
type the appropriate value.

ListBox

For presenting a list of items from which a user can
select a desired item.

CheckBox

Enables the user to select or unselect options. Typically
a CheckBox control returns a value of True if it is
selected and False if it is not selected.

OptionButton

Enables the user to select from a list of items. You have
two controls in a group so that when you select one
control, the other controls are unselected.

ToggleButton

Enables you to create a button that looks either
pressed or unpressed, with the pressed state returning
a value of True, and the unpressed state returning a
False value.

Frame

For display purposes. Acts as a container for grouping
controls.

TabStrip

Enables you to create a multipage area for a section of
your UserForm.

CommandButton

The user clicks this to perform a specific option. When
you create a CommandButton control, you specify the
text that displays on the button as part of the control
properties.

MultiPage

To create tabbed dialog boxes, which enable the user
to switch between pages of options on the dialog box.

By default, when you add the MultiPage control to
your UserForm it only creates two pages. You can add
additional pages by right-clicking one of the Page tabs
and selecting the New Page option.

ScrollBar

Enables the user to scroll through information not on
the screen, or to indicate a position on a scale, such as
for providing a rating level.

SpinButton

Enables a user to specify a value by clicking one of the
arrow buttons to increment or decrement the value.
Use with either a TextBox control or a Label control
that displays the current value of the SpinButton
control.

Image

Use the Image control to add a graphic to the UserForm.
Excel stores the graphic within the worksheet, so if you
distribute the worksheet, Excel includes the graphic. You
can assign the graphic any of the following file formats:
.bmp, .cur, .gif, .ico, .jpg, .wmf.

RefEdit

Consisting of a text field and a button, this enables the
user to select a range of cells from a worksheet. When
the user clicks a button, the corresponding dialog box
minimizes so the user can drag the cursor across the
worksheet to select the desired range of cells.

143646-X Ch13.F 10/16/01 2:39 PM Page 227

EXISTING MENUS AND TOOLBARS

You can modify menus and toolbars either manually
from Excel or you can create subroutines to modify
these CommandBar objects. In Excel, you make
modifications to toolbars and menus via the Customize
command on the Tools menu. From the Customize
menu you can add and remove both menu and toolbar
options. See Chapter 1 for more information about
adding macro references to toolbars and menus.

You can also write a procedure that modifies a
particular menu or toolbar by adding or removing
options. Each option on a toolbar or menu is a
CommandBarControl object associated with the
corresponding CommandBar object. You reference the
CommandBarControls collection using the

Controls property. You add a new option to a toolbar
or menu using the Add method.

When you call the Add method with the Controls
object, you can apply the optional parameters of the
method to specify the type of control to add. The
following table describes each of the parameters you
can call with the Add method to create a new control.
After you add the control, you reference the
CommandBarControl properties to set the specific
properties for the individual control. See the sections
“Add Controls to a Toolbar” and “Add Items to a
Menu” for more information on adding options to
toolbars and menus.

By using toolbars and shortcut menus, you can provide
quick access to commonly used commands. Excel has
more than 50 different built-in toolbars and about 60

different shortcut menus, all of which are part of the

CommandBars collection. This collection also contains any
new custom toolbars and menus you create. Due to their
central location, you can easily make modifications to
existing menus and toolbars, or add new ones as needed.

WORKING WITH COMMANDBARS

EXCEL PROGRAMMING

228

UNDERSTANDING THE COMMANDBARS COLLECTION

The CommandBars collection is part of the Application
object, the main object that contains all Excel-related
objects.

Each individual toolbar or menu is a separate
CommandBar object. You can reference these objects
either by an index value or by the object name. For
example, the code CommandBars(“Standard”)
references the Standard toolbar. See Appendix A for a
list of the built-in toolbars and shortcut menus in Excel.

Excel determines which type of command bar a
particular object contains by the value of the Type
property. Excel has three types of command bar
objects, as described in the following table.

TYPE INTEGER CONSTANT

Toolbar 0 msoBarTypeNormal

Menu Bar 1 msoBarTypeMenuBar

ShortCut Menu 2 msoBarTypePopUp

143646-X Ch13.F 10/16/01 2:39 PM Page 228

CUSTOMIZING DIALOG BOXES, MENUS, AND TOOLBARS

229

NEW MENUS AND TOOLBARS

EXISTING MENUS AND TOOLBARS (CONTINUED)

PARAMETER DESCRIPTION

Type An msoControlType constant value indicating the type of control to add. The five constant
values include: msoControlButton for a standard button, msoControlEdit for an edit box,
msoControlComboBox for a combo box, msoControlDropdown for a drop-down list, and
msoControlPopup for another pop-up list of controls or a menu pop-up.

Id An integer value specifying the built-in control to add to the command bar. If you omit this
parameter, or specify a value of 1, Excel adds a blank control.

Parameter Built-in controls use this parameter to pass information to Excel for running the command.

Before An integer value specifying the position for the new control. You place the control before the specify
control position. If you omit this parameter, Excel adds the control at the end of the command bar.

Temporary Contains a Boolean value indicating whether the control is temporary. If the value of this parameter
is True, the control is removed when Excel closes.

13

PARAMETER DESCRIPTION

Name Indicates the assigned name of the new command bar. If you omit this parameter, Excel
assigns a default name of Custom 1 to the command bar. The number Excel associates with
the name increments as you add more command bars.

Position Determines the position and type of the command bar. You can specify any one of the
MsoBarPosition constant values. Use msoBarLeft, msoBarTop, msoBarRight, or
msoBarBottom to dock the toolbar at a specific location on the screen. Use
msoBarFloating to create a floating toolbar or msoBarPopup to create a shortcut menu.

MenuBar Contains a Boolean value, which indicates whether to replace the currently active menu bar
with the new command bar. Typically the default value of False works best for this
parameter. Specify a value of True to replace the active menu bar.

Temporary Contains a Boolean value, which indicates whether the command bar is temporary. If the
value of this parameter is True, Excel removes the toolbar when Excel closes.

You can create new menus and toolbars as a means of
customizing Excel. To create a new menu or toolbar
from a procedure, you must add a new CommandBar
object to the CommandBars collection. You accomplish
this with the Add method associated with the
CommandBars collection with the code:
CommandBars.Add.

When you utilize the Add method, Excel creates a new
blank CommandBar. You can also use any of the optional
parameters associated with the Add method to specify
the settings for the command bar as you create it. The
following table describes each of the four parameters
that you can call with the Add method. See the sections
“Create a Custom Toolbar” and “Create a Custom Menu”
for more information on creating toolbars and menus.

143646-X Ch13.F 10/16/01 2:39 PM Page 229

⁄ In the Projects window
select the project where you
want to add the new
UserForm.

¤ Click Insert ➪ UserForm. � The Visual Basic Editor
creates a blank UserForm
with a default name of
UserForm1.

‹ Type a new name for the
UserForm in the Name field
of the Properties window.

› Click the UserForm.

VBAProject (

You can create custom dialog boxes that you can use
with any of your macros. Dialog boxes add a graphical
user interface, which enables the user to execute

tasks such as clicking buttons to indicate a desired
selection, or typing appropriate values. When you use VBA
to create macros, you also gain most Visual Basic features,
including the ability to create custom dialog boxes. VBA
refers to these custom dialog boxes as Forms or UserForms.

You create a custom dialog box within the Visual Basic
Editor via the UserForm option. When you do this, the
Visual Basic Editor creates a new UserForm called
UserForm1 within the Forms folder on the Project window.
See Chapter 2 for more information about the Projects
window. Keep in mind, the Forms folder only displays if you
have created UserForms for the current project.

You can change the name of a UserForm to make it easier
to identify when you look at the UserForms listed in the
Project window. To change the name of the UserForm, you
need to change its Name property within the Properties
window.

After you create the UserForm, you can design it using the
various Toolbox controls, which only display when you
select the UserForm window. You add controls to the
UserForm by dragging them from the Toolbox to the
appropriate location on the UserForm. For example, if you
want to request a text value from the user you drag the
TextBox control onto the UserForm. After you add a control,
you can resize it as needed. The Visual Basic Editor applies
default values for each of the control properties. You can
change the assigned values to the properties for the control
within the Properties window. Keep in mind that you need
to select the control on the UserForm before you can set
the properties.

CREATE A CUSTOM DIALOG BOX

EXCEL PROGRAMMING

230

CREATE A CUSTOM DIALOG BOX

143646-X Ch13.F 10/16/01 2:39 PM Page 230

� The Toolbox appears.

ˇ Click a control in the
Toolbox.

Á Drag the control to the
UserForm.

‡ In the Properties window,
type a control name in the
Name field.

� Continue adding controls
as desired.

° Click Run Sub/UserForm
().

� Excel displays the new
dialog box.

� To return to the Visual
Basic Editor, you can click
the Close button () on the
dialog box.

(Name)

CUSTOMIZING DIALOG BOXES, MENUS, AND TOOLBARS 13
You can specify several properties for each control that you add to a
UserForm. Although each control type has its own unique properties,
most of the properites are common between all controls. You change
the value of each control by either typing a new value or clicking
and clicking a value from the drop-down list. The following table
describes some of the common control properties.

231

CONTROL PROPERTIES DESCRIPTION

(Name) Indicates the name of the control.

BackColor Indicates the background color of the
control.

Caption Indicates the text that displays on the
control, such as the button text.

Font The font that displays all values on the
control.

Height The height of the control in pixels.

Text The default text value of the control.

TextAlign Indicates the way you align the text on the
control.

Width Indicates the width, in pixels, of the control.

143646-X Ch13.F 10/16/01 2:39 PM Page 231

⁄ Create a UserForm within
the appropriate project.

Note: See the section “Create a
Custom Dialog Box” for information
on creating UserForms.

¤ Create a new subroutine. Note: See Chapter 3 for information on
creating subroutines.

You can call and display any custom dialog boxes that
are part of the same project as your procedure. You
use custom dialog boxes to gather user input. For

example, you can use the dialog box to request the values
you need from the user to perform the appropriate
calculations within a worksheet.

To display a custom dialog box, you use the Show method
of the UserForm object. The Show method instructs Excel to
display the specified UserForm. The Show method has only
one optional parameter, as shown in the following code:
UserForm1.Show modal.

The modal parameter determines whether the specified
UserForm displays as a modal or modeless dialog box
within Excel. The default value of vbModal makes the
dialog box modal, which means that you must either close

or hide the dialog box before selecting any other options
within Excel. When Excel opens a modal dialog box, all
control is passed to that dialog box and you can only select
options on the dialog box. A value of vbModeless means
that although the dialog box remains open until a user
closes it, a user can perform other program options.

You can close a dialog box in Excel via the Close button in
the upper-right corner of the dialog box. You can also close
it within your macro when you use the Unload method.
Typically, all dialog boxes can contain a Close or Cancel
button, which enables a user to close the dialog box. You
must use the Click event for these CommandButton
controls to create a procedure that calls the Unload
method. See “Capture Input from a Custom Dialog Box” for
more information about specifying code to run when a user
clicks a button.

CALL A CUSTOM DIALOG BOX
FROM A PROCEDURE

EXCEL PROGRAMMING

232

CALL A CUSTOM DIALOG BOX FROM A PROCEDURE

143646-X Ch13.F 10/16/01 2:39 PM Page 232

‹ Type UserForm1.Show
vbModal, replacing
UserForm1 with the name of
the UserForm and vbModal
with vbModeless to make
the dialog box modeless.

› Switch to Excel and run
the macro.

� The specified UserForm
displays as a custom dialog
box within Excel.

CUSTOMIZING DIALOG BOXES, MENUS, AND TOOLBARS 13

You can use the Unload statement to
remove the UserForm from memory. When
you call the statement, all controls on the
UserForm are reset to the default values.
Therefore, you cannot access the options
specified by the user after the UserForm
unloads from memory. To ensure that you
can access the necessary values, you can
either store the values in global variables or
hide the UserForm until your procedure
terminates. You either unload a UserForm by
specifying the Unload statement followed
by the name of the UserForm to unload, or
with the shorter codes listed below.

You can hide a UserForm so that it is no longer visible
when called by a macro. To hide a UserForm, you can
use the Hide method, which still allows you to access
the form from your procedure.

233

TYPE THIS:

UserForm1.Hide

RESULT:

Excel hides the form.

Keep in mind that after hiding a form Excel may
appear to freeze as your code continues to access
the UserForm. This condition clears as soon as the
code that accesses the UserForm finishes
processing.

THIS CODE:

Unload UserForm1

IS EQUIVALENT TO:

Unload Me

143646-X Ch13.F 10/16/01 2:39 PM Page 233

Caption

⁄ Create a UserForm within
the appropriate project.

Note: See the section “Create a
Custom Dialog Box” for information
on creating UserForms.

¤ On the Toolbox, click the
ListBox control icon ().

‹ Drag to the UserForm.

› Click the CommandButton
control icon ().

ˇ Drag to the UserForm.

Á In the Properties window,
type “OK” as the Caption
property value for the
CommandButton control.

� The text on the
CommandButton changes to
reflect the value of the
caption property.

‡ Double-click the
CommandButton object.

You typically use dialog boxes in Excel to gather input
from the user. The input you capture from a user can
be anything from determining which button was

pressed to actual values typed by a user. You can capture
the user input from the dialog box so you can return the
appropriate responses by using the UserForm events. For
example, when the user clicks an OK CommandButton
control you use a CommandButton_Click subroutine to
indicate what steps to perform.

Excel considers every user interaction that occurs on a
dialog box, such as scrolling through a list of items, selecting
an OK button, or typing text in a text box, as an event. Each
UserForm control has several different events that you can
capture. The most common event that occurs is the Click
event. This event occurs each time a user clicks a control.

To make code interact with the UserForm, you need to
create procedures that execute when specific events occur.

Each UserForm you create has two elements: the graphical
layout window and a code window. The graphical layout
window is the location where you add controls that display
on the dialog box. See the section “Create a Custom Dialog
Box” for more information on designing custom dialog
boxes. Each UserForm also has a code window that contains
all UserForm-specific code and that you use to create the
event procedures for each control. You can create event
code for a specific control on the code window by double-
clicking the control. By default, the Visual Basic Editor
creates a Click event for the control when you click it. If a
Click event already exists, the Visual Basic Editor simply
displays the code window.

CAPTURE INPUT FROM A
CUSTOM DIALOG BOX

EXCEL PROGRAMMING

234

CAPTURE INPUT FROM A CUSTOM DIALOG BOX

143646-X Ch13.F 10/16/01 2:39 PM Page 234

� The code window for the
UserForm displays.

� Excel creates a subroutine
called CommandButton1
_Click() on the code
window.

° Type UserSelection:=
ListBox1.Value, replacing
UserSelection with the
name of the global variable
used to capture user input.

· Type Unload
SampleDialogBox, replacing
SampleDialogBox with the
name of the UserForm.

CUSTOMIZING DIALOG BOXES, MENUS, AND TOOLBARS 13
The Click event occurs when the user clicks a control or a value in a control with
the mouse button. For most controls you can write a procedure to handle the Click
event, the most commonly captured event for dialog boxes, by simply placing the
event name after the control name. All event-handling procedures require that you
place an underscore character between the control name and the event name.

Example:
Sub CommandButton1_Click()

If you need to capture the Click event to determine the page or tab selected with a
MultiPage or TabStrip control, the procedure also includes an index parameter
value that specifies the index to the page or tab.

Example:
Sub MultiPage1_Click(1)

With the MultiPage and TabStrip controls, you need to create a separate
procedure to handle the selection of each page or tab by using the corresponding
index value.

Besides actually clicking a control with the mouse, a Click event also occurs when
you press Enter and a control has focus, when you press the accelerator key that
corresponds to the control, or when you press Spacebar and a CommandButton has
focus.

235

CONTINUED

143646-X Ch13.F 10/16/01 2:39 PM Page 235

‚ Create a new module.

Note: See Chapter 2 for information on
creating modules.

— Type Public UserSelection
As String, replacing
UserSelection with the
name of the global variable.

± Create a new subroutine.

¡ Type With
UserForm1.ListBox1, replacing
UserForm1 and ListBox1
with the names of the
UserForm and ListBox
controls, respectively.

™ Type .AddItem “January”,
replacing “January” with
the value to add to the
ListBox control.

£ Repeat step 5 for each
item to place in the control.

¢ Type End With.

You create code to monitor events caused by controls
to determine when specific code should execute. Each
control has its own specific events that you can

capture, and the Visual Basic Editor keeps track of those for
you. You can quickly create an event procedure on the code
window by selecting the appropriate control name in the
Object list box and then selecting the corresponding event
from the Procedure list box. When you select an event, the
Visual Basic Editor creates a procedure with the name of the
control followed by the event name.

All control values on a UserForm are only active as long as
you have the dialog box open. If you close the dialog box
prior to saving user input values, you lose the user input. To
avoid any potential problems with lost data, consider saving

user responses to global variables that can pass into other
procedures. For example, you typically call a UserForm from
another procedure to capture user responses and then pass
the values back to the main procedure.

You must declare public variables at the top of your
module, before any procedure code, using the Public
statement. Doing so enables you to declare variables that all
procedures within a project can access. See Chapter 3 for
more information on declaring variables.

You can also use the With statement to shorten the code
required to set properties for an object. See Chapter 4 for
more information on using the With statement.

CAPTURE INPUT FROM A
CUSTOM DIALOG BOX

EXCEL PROGRAMMING

236

CAPTURE INPUT FROM A CUSTOM DIALOG BOX (CONTINUED)

143646-X Ch13.F 10/16/01 2:39 PM Page 236

∞ Type SampleDialogBox,
replacing SampleDialogBox
with the name of the UserForm.

§ Type additional VBA code
to process the user selection
value returned by the global
variable.

¶ Switch to Excel and run
the macro.

Note: See Chapter 1 to run a macro.

� The dialog box displays the
list of values specified by the
subroutine.

CUSTOMIZING DIALOG BOXES, MENUS, AND TOOLBARS 13

You capture control events to determine when to execute
specific code. The following list identifies the most common
events that occur with the various controls placed on
UserForms. Not all events are available for each control. On
the code window, check the Procedure list box to see the
events associated with the selected control.

237

CONTROL EVENTS OCCURRENCE

BeforeDragOver User is drag-and-dropping data onto a control.

BeforeUpdate Before data on a control is changed.

Change When the Value property of the control changes.

Click When user clicks the control with the mouse button.

DblClick When the user clicks twice with the mouse on the control.

Enter Before a control receives focus.

KeyDown When the user presses a key.

MouseDown When the user presses the mouse button.

143646-X Ch13.F 10/16/01 2:39 PM Page 237

⁄ On the UserForm, double-
click the control that you
want to validate the data
values.

� Typically an OK command
button is a good location for
validating data values.

� The code window opens
with the cursor at the
beginning of the Click
procedure for the selected
control.

You must validate the values specified for controls on a
dialog box before passing the values back to your
procedure. When you validate the data values, you do

so for two major reasons. First, you ensure that the user
specifies a value for a control. If the user forgets to select a
control value, you can remind them immediately. Second,
and probably most importantly, you ensure that errors do
not occur in your code because the wrong type of data
passes to a procedure.

You can create code that checks the user input for any
event that occurs on the UserForm. The easiest place to do
so is prior to closing the dialog box. For example, if you
have a CommandButton control, such as an OK button, that
passes the values to global variables and closes the dialog
box, you may consider this the ideal place to validate your
data. When you place the validation code in that routine,
you need to use a conditional statement, such as an If

Then statement, to check the properties of each control.
This ensures that they have the appropriate values. For
example, if you want to make sure that the user typed a
string in the Name text field on the dialog box, you can add
the following If Then statement to your procedure: If
TextBox1.Text = “ “ Then.

This If Then statement checks the Text property for the
specified TextBox control and ensures that it contains a
value. If the property is empty (there is nothing in it), your
VBA code can call the MsgBox function to display a
message indicating that a value must be specified.

Besides checking for values, you can also use the VBA
validation functions to verify that the control contains the
appropriate data type. For example, the statement If Not
IsNumeric(TextBox1.Value) Then ensures that the
user typed a number in a TextBox control.

VALIDATE INPUT FROM A DIALOG BOX

EXCEL PROGRAMMING

238

VALIDATE INPUT FROM A DIALOG BOX

143646-X Ch13.F 10/16/01 2:39 PM Page 238

¤ Type If ListBox1.ListIndex =
-1 Then, replacing
ListBox1.ListIndex =
-1 with the control and
property value to check.

‹ Type MsgBox “Select a
value”, replacing “Select a
value” with the text for the
MsgBox.

› Type Exit Sub.

ˇ Type End If.

Á Switch to Excel and run
the macro.

� The Message Box displays
if a value is not selected for
the control.

CUSTOMIZING DIALOG BOXES, MENUS, AND TOOLBARS 13

239

You can use the UserForm events to launch
validation code, as shown in the following
code that captures the QueryClose event
to ensure a value was selected for a ListBox
control prior to the dialog box closing.

Example:
Private Sub UserForm_QueryClose(Cancel
As Integer, CloseMode As Integer)

If Not IsNumeric(TextBox1.Value) Then

MsgBox “Must be a number”

Cancel = 1

End If

The QueryClose event has two arguments, Cancel and
CloseMode. The Cancel argument accepts an integer
value. If the value of the argument is anything other than
zero the QueryClose event stops and the associated
dialog box remains open. The CloseMode argument
contains a constant value indicating the cause of the
QueryClose event, as shown in the following table.

CONSTANT VALUE DESCRIPTION

vbFormControlMenu 0 User selected the Close
button on the dialog box.

vbFormCode 1 The code initiated an
Unload statement.

vbAppWindows 2 The Windows operating
session is ending.

vbAppTaskManager 3 The Windows Task
Manager is closing Excel.

143646-X Ch13.F 10/16/01 2:39 PM Page 239

⁄ On the Toolbox, click the
control you want to
customize.

¤ Drag it to the UserForm.

‹ On the Properties
window, type the control
name in the (Name) field.

› Type the text for the
control in the Caption field.

ˇ On the Toolbox, right click
the Controls tab.

� A menu displays the
options available for the
pages in the Toolbox.

Á Click New Page.

Caption

You can customize the Toolbox window to suit your
needs. The Toolbox that displays when you select a
UserForm within the Visual Basic Editor contains all of

the standard controls you can add to the UserForm. These
controls display on a single tabbed page called Controls.
You can change the icon that a control uses as well as the
tip text that displays when you drag you cursor across the
icon. You can also create new controls to add to the
Toolbox.

Making modifications to existing Toolbox controls is fairly
straightforward. To modify an existing control, you access
the Customize Control dialog box which enables you to
change the text and load a new icon.

You create new controls by customizing and combining the
existing controls on the Toolbox. For example, if you always

add an OK button to all of your UserForms, you can create
a custom button and set the appropriate properties such as
the Caption, Width, Height, and Default. After you
create the button, you place it on the Toolbox and the
Visual Basic Editor adds it as a new control. After you add
your new button to the Toolbox, you can select the
Customize Control option and change its name and icon.

Alternately, you can create new controls by combining
multiple controls. For example, you can create a new
control that consists of both an OK and a Cancel button.

To keep your custom controls separate from the existing
controls on the Toolbox, consider adding a new page to the
Toolbox for your controls. You create a new page on the
Toolbox using the New Page option.

CREATE CUSTOM USERFORM CONTROLS

EXCEL PROGRAMMING

240

CREATE CUSTOM USERFORM CONTROLS

143646-X Ch13.F 10/16/01 2:39 PM Page 240

� The Visual Basic Editor
adds a new page to the
Toolbox.

‡ Click the control on the
UserForm.

� Drag the control to the
Toolbox.

� The new control appears
on the new page of the
Toolbox.

� You can customize the
name of the new control by
right-clicking the control icon
and clicking the control's
Customizing option.

CUSTOMIZING DIALOG BOXES, MENUS, AND TOOLBARS 13

When you create your new page on the
Toolbox, the Visual Basic Editor adds it as
the second page on the Toolbox. To
change the order of the pages, you can
right-click the page tab, and click the
Move option on the menu. Selecting this
option displays the Move dialog box. To
change the order of pages, click the
desired page to select it, and click or

to indicate the direction you want to
move the page.

Creating a separate page on the Toolbox to store your
custom controls enables you to export the page for
loading on another machine. To export the page of
custom controls, right-click the page tab and click the
Export Page option. In the Export Page dialog box,
specify the name and location for the page file. The
Visual Basics Editor assigns the page file an extension
of .Pag indicating that it is a Toolbox page file.

You import a page file into the Toolbox by right-
clicking the tab menu and clicking the Import Page
option. In the Import Page dialog box, specify the
name and location of the page file to import.

241

143646-X Ch13.F 10/16/01 2:39 PM Page 241

CREATE A NEW FORM

⁄ Create a new UserForm.

Note: See the section “Create a
Custom Dialog Box” for more
information on creating UserForms.

¤ Click File ➪ Export File. � The Export File dialog box
displays.

‹ Click and click the
location where you want to
save the UserForm in the
Save in list box.

› Type the form file name in
the File Name field.

ˇ Click Save.

SampleDialogBox2

If you find that you are consistently creating the same type
UserForm for displaying custom dialog boxes with your
macros, you can create a UserForm template file to save

time and effort. When you create UserForms the Visual Basic
Editor attaches them to the project where you create them.
Each time you create a new project you need to re-create the
UserForm or copy it from another project using the Project
window. See Chapter 2 for more information on working
with the Project window.

When you create a UserForm template, you design a basic
UserForm, and save it to a file. You can then add the form to
any other project you create. You can save a UserForm to a
file via the Export File command on the File menu. This
displays the Export File dialog where you specify the name
and location for saving the form file. You may consider
creating a folder that you can use for saving any common
Excel project files.

When you create a UserForm for use as a template,
consider keeping it fairly generic so that you can customize
it for each new project. For example, if you frequently
create a UserForm with a TextBox control for gathering user
input and two CommandButton controls, OK and Cancel,
you can create a generic version with the three controls.
However, if you do not place the Label control for the text
box on the template version, you can import the form and
customize it for the type of data you want to gather from
the user.

You add a UserForm template to a project by using the
Import option. When you import a UserForm into your
project, the Visual Basic Editor creates a new UserForm and
assigns it the next sequential name.

CREATE A USERFORM TEMPLATE

EXCEL PROGRAMMING

242

CREATE A USERFORM TEMPLATE

143646-X Ch13.F 10/16/01 2:39 PM Page 242

IMPORT A USERFORM
TEMPLATE

⁄ In the Project window,
click the project where you
want to add the UserForm.

¤ Click File ➪ Import File. � The Import File dialog box
displays.

‹ Click the file containing
the UserForm.

› Click Open.

� The Visual Basic Editor
adds the selected UserForm
to the current project.

SampleDialogBox2.frm

CUSTOMIZING DIALOG BOXES, MENUS, AND TOOLBARS 13

You can specify the order that Excel uses to move between
controls on the UserForm by setting the controls’ tab order on
the UserForm. The tab order indicates the order in which the
Visual Basic Editor selects the controls when a user presses the
Tab key. By default, the tab order is the order in which you
added the control to the UserForm.

Each control has two properties that deal with the tab order.
The first property, TabStop, determines whether focus stops on
the control when the user presses the Tab key. If you set the
property to False for the control, tabbing through controls on
the dialog box skips over the control.

The other property, TabIndex, specifies a value between 0 and
the number of controls indicating the tab order for the control.

You can set the tab order for the entire list of the controls on
the form via the Tab Order dialog box. This dialog box displays
when you right-click the UserForm and click the Tab Order
option. You can change the order of the controls by clicking a
control and then clicking or .

243

143646-X Ch13.F 10/16/01 2:39 PM Page 243

⁄ Create a new subroutine.

Note: See Chapter 3 for information on
creating subroutines.

¤ Type Dim NewTBar As
CommandBar, replacing
NewTBar with the name of
the toolbar you want to
create.

‹ Type Set NewTBar =
CommandBars.Add
(Temporary:=True).

› Type With NewTBar.

You can design a VBA procedure to create new
toolbars within Excel where you can place links to the
custom macros you create. You create a new toolbar

by adding a new CommandBar object to the CommandBars
object collection. Excel comes with approximately 30
different built-in toolbars, to which you can add controls.
By creating new toolbars to house your custom toolbar
options, you do not affect the layout of the standard
toolbars.

You can create a new toolbar by using the Add method
associated with the CommandBars collection. Although the
Add method has four different parameters, they are all
optional. You should specify a name for the new toolbar
using the Name parameter. Also, indicate the location where
you want to place the toolbar in the window using the
Position parameter values. If you want the CommandBar
you create to replace the current menu bar, specify a value

of True for the MenuBar parameter. If you only want the
toolbar to display after running the associated procedure,
set the value of the Temporary parameter to True. If you
create a temporary toolbar it is deleted when you close
Excel. To lauch the toolbar again, you need to rerun the
associated procedure. See the section “Working with
CommandBars” for more information about the Add
method properties.

Adding a new toolbar with the Add method creates a new
blank toolbar that is not visible in Excel. To make it visible,
you set the Visible property associated with the toolbar
to True. In fact, you can use this property at any time to
switch between having a visible and invisible toolbar.

After you create the toolbar, you need to use the various
properties associated with the CommandBar object to
customize the location, protection, size, and visibilty.

CREATE A CUSTOM TOOLBAR

EXCEL PROGRAMMING

244

CREATE A CUSTOM TOOLBAR

143646-X Ch13.F 10/16/01 2:39 PM Page 244

ˇ Type .Name = “MyToolbar”,
replacing “MyToolbar”
with the name of the new
toolbar.

Á Type .Position =
msoBarFloating, replacing
msoBarFloating with the
MsoControlType constant
value.

‡ Type .Visible = True.

° Type End With.

Note: See Chapter 4 for more
information on using the End With
statement with objects.

· Switch to Excel and run
the macro.

� Excel creates the new
toolbar and displays it on the
window.

CUSTOMIZING DIALOG BOXES, MENUS, AND TOOLBARS 13

If you attempt to create a custom toolbar with the same name as an existing
toolbar, Excel returns an error message. To avoid these errors, you can add
code to you procedure that checks for the existence of a CommandBar
object with the same Name parameter as your new one. If a toolbar exists,
you can avoid the attempt to add or add the toolbar with a different name.
The following code checks to see if a toolbar named “MyToolbar” exists.

Example:
For Each CB In CommandBars

If CB.Name = “MyToolbar” Then

TBFound = “True”

End If

Next

This code uses the For Each Next statement to cycle through each
CommandBar object in the CommandBars collection to determine if any of
the existing CommandBar objects have a Name property value of
“MyToolbar”. If Excel encounters a match, the TBFound variable is set to
a value of True. If you see that the value of the TBFound variable is False,
you can add the new toolbar. See Chapter 6 for more information on
working with For Each Next statements.

245

143646-X Ch13.F 10/16/01 2:39 PM Page 245

⁄ Create a new subroutine.

¤ Type Dim CBar As
CommandBar replacing CBar
with the toolbar variable.

‹ Type Dim NewControl As
CommandBarControl,
replacing NewControl with
toolbar button variable.

› Type Set CBar =
CommandBars(“MyToolbar”),
replacing “MyToolbar”
with the name of the toolbar.

ˇ Type Set NewControl =
CBar.Controls.Add(Type:=
msoControlButton).

Á Type With NewControl.

You can add controls to a toolbar that correspond to
VBA macro code or any other Excel commands that
you want to execute when selecting that toolbar

control. You can add controls to any toolbar available within
Excel. You can add existing Excel controls to the toolbar, or
you can add new controls. When you add a new control to
a toolbar, you can specify the icon image to represent the
control along with the tool tip text, which displays when
you drag the cursor across the control. You add a new
control by specifying the toolbar where you want to add
the control followed by the Add method.

When you reference specific CommandBar objects within
the CommandBars collection, you need to use the
Controls property to return the collection of objects.
When you use the Add method without any parameters,
Excel places a blank control on the toolbar. See the section

“Working with CommandBars” for more information about
the parameters available with the Add method. If you add
an existing control to the toolbar, you can specify the ID of
the control using the Id parameter.

When you add a control to a toolbar, you use the properties
associated with the CommandBarControl Object to
customize your control. If you did not assign an existing
Excel command to the control, you need to indicate the
action to perform when a user selects the control. You do
this by specifying the name of the VBA procedure to run
using the OnAction property.

To make the toolbar control easy to recognize, you must
assign it a button image using the FaceID property. You
can specify an image value between 0 and 3499.

ADD CONTROLS TO A TOOLBAR

EXCEL PROGRAMMING

246

ADD CONTROLS TO A TOOLBAR

143646-X Ch13.F 10/16/01 2:39 PM Page 246

‡ Type .FaceId = 24,
replacing 24 with the ID of
the toolbar button image.

° Type .OnAction =
“MySub”, replacing “MySub”
with the name of the macro
to execute.

· Type End With.

‚ Type CBar.Visible = True.

— Switch to Excel and run
the macro.

� Excel adds the button to
the toolbar.

� When you click the
button, the corresponding
macro executes.

CUSTOMIZING DIALOG BOXES, MENUS, AND TOOLBARS 13

When you add an existing control to a toolbar, you need to
know the ID of the control to add it. You specify the
control ID as the value for the ID property. Unfortunately,
Microsoft does not provide a list of the controls within
Excel. The fastest method for determining control IDs is to
create a procedure that determines the IDs of the controls
used on each command bar.

247

TYPE THIS:

Sub GetControlID()
Dim RowId As Integer
Dim CB As CommandBar
Dim CBC As CommandBarControl
RowId = 1
For Each CB In CommandBars

Cells(RowId, 1) = CB.Name
For Each CBC In CommandBars(CB.Name).Controls

Cells(RowId, 2) = CBC.ID
Cells(RowId, 3) = CBC.Caption
RowId = RowId + 1

Next
Next
End Sub

RESULT:

The subroutine looks
at each command bar
in the CommandBars
object and returns the
name of the command
bar along with a list of
the control names and
IDs on that particular
command bar.

143646-X Ch13.F 10/16/01 2:39 PM Page 247

⁄ Create a new subroutine.

¤ Type Dim NewMenu As
CommandBarControl,
replacing NewMenu with the
variable for the new menu.

‹ Type Dim ExcelMenu As
CommandBarControl,
replacing ExcelMenu with
the variable used to cycle
through the menus.

› Type Dim Count As Integer,
replacing Count with the
variable that counts menus.

ˇ Type For Each ExcelMenu In
CommandBars(1).Controls.

Á Type Count = Count + 1.

‡ Type Next.

Excel enables you to add custom menus to house links
to VBA macros or other commonly used Excel
commands. You can design a VBA procedure to create

new menus that display within Excel. Typically you place
most menus on the active menu bar. The active menu bar in
Excel is the first object in the CommandBars collection. All
menus you add become CommandBarControls on the
active menu bar.

You can create a new Excel menu with the Add method
associated with the CommandBarControls collection.
Although the Add method has five different parameters —
Type, Id, Parameter, Before, and Temporary — they
are all optional. When creating a new menu, you only need
to use the Type and Before parameters. You must specify
a value of msoControlPopup for the Type parameter to
create a new menu. You use the Before parameter to

indicate where on the menu bar to place the new menu.
You do this by specifying the index value of the menu in
front of which you want to place the new menu.

After you create the menu, you can set several different
properties for the menu. The most commonly set property
is the Caption property. The Caption property contains
the display value for the menu on the menu bar. If you look
at Excel menus, you see that most of them have a shortcut
key that displays the menu when you click Alt and the key
simultaneously. Excel identifies the shortcut key on a menu
by underlining the appropriate character in the menu name.
You can specify the shortcut key as part of the Caption
property value by placing the & in front of the appropriate
character.

CREATE A CUSTOM MENU

EXCEL PROGRAMMING

248

CREATE A CUSTOM MENU

143646-X Ch13.F 10/16/01 2:39 PM Page 248

° Type Set NewMenu =
CommandBars(1).
Controls.Add _.

· Type
(Type:=msoControlPopup.

‚ Type
before:=CommandBars(1).
Controls(Count).Index).

— Type NewMenu.Caption =
“&Macros“, replacing
“&Macros” with the
name for the menu.

± Switch to Excel and run
the macro.

� Excel creates the new
menu.

CUSTOMIZING DIALOG BOXES, MENUS, AND TOOLBARS 13

When adding new menus to the active menu bar using the
Before parameter, you need to specify an index value of an
existing menu. If you do not specify a value for the Before
parameter, Excel adds the new menu to the end of the active
menu bar. The sample code for this section uses the For Each
looping statement to count the number of menus on the active
menu bar and then places the new menu before the last menu.

Another way to specify an index value involves using the
FindControl method to locate the desired menu and then
using the index value to specify where to place the new menu.
With this method, you specify the ID setting for the menu. The
example locates the Insert menu, which has an ID of 30005. The
table lists the Excel built-in menus ID values.

Example:
MenuIndex = CommandBars(1).FindControl(id:=30005).Index

249

MENU ID

File 30002

Edit 30003

View 30004

Insert 30005

Format 30006

Tools 30007

Data 30011

Chart 30022

Window 30009

Help 30010

143646-X Ch13.F 10/16/01 2:39 PM Page 249

⁄ Create a new subroutine.

¤ Type Dim UseMenu As
CommandBarControl,
replacing UseMenu with the
menu variable.

‹ Type Dim NewMenuItem
As CommandBarControl,
replacing NewMenuItem
with the menu item variable.

› Type Set UseMenu =
CommandBars(1).
Controls(“Macros”), replacing
“Macros” with the name of
the menu.

ˇ Type Set NewMenuItem =
UseMenu.Controls.Add(Type:
=msoControlButton).

You can place macros and other Excel commands that
you use frequently on menus. You can place
additional menu items to both existing and custom

menus by adding a new CommandButtonControl object.
Because the menu to which you add the menu item is also a
CommandButtonControl object, the difference between
the two controls is the value of the Type parameter. The
menu has a Type parameter value of msoControlPopup,
and the menu item has a value of msoControlButton. See
the section “Create a Custom Menu” for more information
on creating menus.

You create a menu item using the Add method associated
with the CommandBarControls collection. When you call
the Add method, the only parameter you need to use is the
Type parameter with a value of msoControlButton.

You can set several different properties with the menu item.
The main properties you need to set are the Caption and

the OnAction properties. The Caption property contains
the display value for the menu item. You can also set the
shortcut key that executes the menu item when you press
the Alt key and the shortcut key simultaneously. Excel
identifies the shortcut key on a menu by underlining the
appropriate character in the menu item name. You can
specify the shortcut key as part of the Caption property
value by placing the & in front of the appropriate character.

The OnAction property specifies the macro to execute
when a user clicks a menu item. To specify a macro, place
the macro name in quotes. Remember that if you do not
have the workbook containing the macro open when you
click the menu item, Excel cannot find the specified macro.
To avoid this situation, consider placing the macro in the
Personal Macro Workbook. See Chapter 1 for more
information on the Personal Macro Workbook.

ADD ITEMS TO A MENU

EXCEL PROGRAMMING

250

ADD ITEMS TO A MENU

143646-X Ch13.F 10/16/01 2:39 PM Page 250

Á Type With NewMenuItem.

‡ Type .Caption = “Message
&Box”, replacing “Message
&Box” with the caption for
the menu item.

° Type .OnAction =
“MySub”, replacing “MySub”
with the name of the macro
to execute.

· Type End With.

‚ Switch to Excel and run
the macro.

� Excel adds the menu item
to the specified menu.

CUSTOMIZING DIALOG BOXES, MENUS, AND TOOLBARS 13

You can create submenus
on a menu to organize
commands. For example,
you can create a Macro
menu to group common
macros together. You create
submenus by adding a new
CommandBarControl
object with the type
msoControlPopup to the
main menu. You can then
add new menu items to the
submenu using code similar
to that dealing with the
SubMenuItem object.

251

TYPE THIS:

Sub CreateSubMenu()
Dim MainMenu As CommandBarControl
Dim SubMenu As CommandBarControl
Dim SubMenuItem As CommandBarControl
Set MainMenu = CommandBars(1).Controls(“Macros”)
Set SubMenu = MainMenu.Controls.Add(Type:=msoControlPopup)
SubMenu.Caption = “&Budget”
Set SubMenuItem = SubMenu.Controls.Add(Type:=msoControlButton)
With SubMenuItem

.Caption = “Sum Expenses”

.OnAction = “SumExp”
End With
End Sub

RESULT:

The code determines the menu where you want to place the
submenu and assigns it to a CommandBarControl object.
Next, the subroutine creates the submenu and sets the value
of the Caption property.

143646-X Ch13.F 10/16/01 2:39 PM Page 251

⁄ Create a new subroutine.

¤ Type Dim SC As
CommandBar, replacing SC
with the menu variable.

‹ Type Dim SItem1 As
CommandBarControl,
replacing SItem1 with the
first menu item variable.

› Type Dim SItem2 As
CommandBarControl,
replacing SItem2 with the
second menu item variable.

ˇ Type Set SC =
CommandBars.Add
(Name:=”TestBar”,
Position:=msoBarPopup),
replacing “TestBar” with
the name for the shortcut
menu.

Á Type Set SItem1 =
SC.Controls.Add(Type:=
msoControlButton).

‡ Type With SItem1.

You can create a shortcut menu that displays when a
user performs a specific action that contains
commands related to VBA macro and Excel

commands. A shortcut menu is a pop-up menu that displays
when you right-click a particular location within Excel. You
can create new shortcut menus or modify existing Excel
shortcut menus, and you perform all shortcut menu
creation and modification within the Visual Basic Editor.

A shortcut menu is similar to a toolbar in that both are
actually CommandBar objects, but each has different
controls. Typically a toolbar only contains icons whereas a
shortcut menu can contain a combination of text
descriptions and icons.

You can create a new shortcut menu by using the Add
method associated with the CommandBars collection.
Although the Add method has four different parameters —
Name, Position, MenuBar, and Temporary — they are all

optional. You specify a name for the new shortcut menu
using the Name parameter. You assign a value of
msoBarPopup to the Position parameter to create a
pop-up menu. If you only want the toolbar to display after
running the associated procedure, use the Temporary
parameter.

See the section “Working with CommandBars” for more
information about the Add method properties.

After creating the shortcut menu, you need to add menu
items. To do this, you create a menu item by using the Add
method associated with the CommandBarControls
collection. With the Add method, you use the Type
parameter with a value of msoControlButton.

See the section “Add Items to a Menu” for more
information about adding items to a menu and setting the
menu item properties.

CREATE A SHORTCUT MENU

EXCEL PROGRAMMING

252

CREATE A SHORTCUT MENU

143646-X Ch13.F 10/16/01 2:39 PM Page 252

° Type .Caption = “Bold
Range”, replacing “Bold
Range” with the menu item
caption.

· Type .OnAction =
“BoldRange”, replacing
“BoldRange” with the name
of the macro to launch.

‚ Type End With.

� Repeat steps 6 through 10
for each menu item.

— Switch to Excel and run
the macro.

� The shortcut menu
displays for the appropriate
event.

CUSTOMIZING DIALOG BOXES, MENUS, AND TOOLBARS 13

After you create the shortcut menu,
you need to specify the code that tells
Excel when to display it. Typically
Excel displays shortcut menus when a
particular event takes place, such as
right-clicking a cell in a worksheet.
Although you can use any of the Excel
events to trigger the display of a
shortcut menu, Excel requires you to
place the code either in the
ThisWorkbook Object code module
or in a specific worksheet module.
See Chapter 15 for more information
on working with Excel events.

The code lauches the shortcut menu if
you click a cell in the range of A1:A10:

253

TYPE THIS:

Private Sub Worksheet_BeforeRightClick(ByVal Target As Range,
Cancel As Boolean)

If Not Intersect(Target, Range(“a1:a10”)) Is Nothing Then
CommandBars(“Shortcut”).ShowPopup

End If
End Sub

RESULT:

The subroutine uses the Intersect method to determine if
the clicked cell is part of the target range of A1:A10. If you
click a cell in the target range, the TestBar shortcut menu
displays.

143646-X Ch13.F 10/16/01 2:39 PM Page 253

⁄ Create a new subroutine. ¤ Type Dim CBar As
CommandBar, replacing
CBar with the command bar
variable.

‹ Type For Each CBar in
CommandBars.

› Type If CBar.BuiltIn = False
Then.

You can delete any of the custom toolbar or shortcut menus
you no longer need to keep them current. Because all
toolbars and shortcut menus are CommandBar objects, to
delete one, you need to remove the associated object. Excel
does not allow you to delete the built-in CommandBar
objects. When you delete a custom CommandBar object,
you can no longer access it within Excel. If you want to use
the toolbar or shortcut menu again, you need to run the
corresponding macro to re-create it.

One of the most important reasons for deleting a
CommandBar object is to allow you to reload it. You
generally reload when you make changes to the
CommandBar object and want to reflect these changes in
the currently loaded CommandBar object. Excel does not
allow you to load a CommandBar object with the same
name as an existing object. Therefore, if you decide to
modify a menu or toolbar you need to delete the existing
version to load the new one.

You remove a custom CommandBar object using the
Delete method associated with the object. To use this
method, you simply indicate the CommandBar object to
delete followed by the Delete method. For example, to
delete a toolbar named TestBar you would type
CommandBar(“TestBar”).Delete.

Excel returns an error if you attempt to remove a built-in
toolbar or menu. You can make sure a menu or toolbar is
custom by looking at the value of the BuiltIn property for
the CommandBar control. If the BuiltIn property has a
value of True, the associated CommandBar control is one
of the standard ones that comes with Excel, and you cannot
delete it.

You can create a procedure that removes all of the custom
toolbars and shortcut menus you have created by checking
the value of the BuiltIn property. All custom menus and
toolbars have a BuiltIn property value of False.

DELETE CUSTOM TOOLBARS
AND SHORTCUT MENUS

EXCEL PROGRAMMING

254

DELETE CUSTOM TOOLBARS AND SHORTCUT MENUS

143646-X Ch13.F 10/16/01 2:39 PM Page 254

ˇ Type CBar.Delete.

Á Type End If.

‡ Type Next.

° Switch to Excel and run
the macro.

� Excel removes all custom
toolbars.

CUSTOMIZING DIALOG BOXES, MENUS, AND TOOLBARS 13

You can also modify toolbars and menus
from within Excel by clicking Tools➪
Customize. To prevent a user from
modifying a menu or toolbar within Excel,
you can set the msoBarProtection
constant value for the Protection
property. The example shows code that
protects a toolbar so that a user cannot add
or remove buttons. You can specify the
constant values using the table.

Example:
CommandBars(“MacroToolbar”).Protection =
msoBarNoCustomize

255

CONSTANT DESCRIPTION

msoBarNoChangeDock Cannot change docking
of command bar.

msoBarNoChangeVisible Cannot change
Visible property.

msoBarNoCustomize Cannot add or remove
buttons.

msoBarNoHorizontalDock Cannot dock on left or
right side of window.

msoBarNoMove Cannot move command
bar object.

msoBarNoProtection Removes all protection.

msoBarNoResize Cannot resize command
bar object.

msoBarNoVerticalDock Cannot dock on top or
bottom of window.

143646-X Ch13.F 10/16/01 2:39 PM Page 255

You can use Excel charts to create a graphical
representation of data within a workbook and to
illustrate specific relationships between the selected

data values. Excel provides several different types of charts,
and you can customize the attributes of each chart type for
your data.

Excel maintains all charts as Chart objects within the Excel
Object Model. Although seemingly straight forward, you
may find working with the Chart object initially
overwhelming both due to the number of other objects it
contains, and because your interaction with it largely
depends on the type of chart or worksheet you have.

CHART BASICS

EXCEL PROGRAMMING

256

CHART SHEETS

Chart sheets are actually separate sheets within the
Workbook. As you add chart sheets to a workbook, a
separate page tab displays at the bottom of the Excel
window, similar to the Sheet tabs. By default, Excel
names each chart sheet Chart1, Chart2, and so on. But,
just like a worksheet, you can change the name of the
Chart Sheet.

Excel stores all chart sheets as Chart objects, which
are children of the corresponding Workbook object.

Each Chart object has several different child objects
that represent the various elements of the chart. For
example, the ChartTitle object represents the title
for the chart. You can change the text displayed, font
used, font characteristics (bold, italics, and so on),
border, and color of the chart title by using the
different properties, methods, and child objects
associated with the ChartTitle object.

EMBEDDED CHARTS

When you place a chart on a worksheet you create an
embedded chart. By having the chart embedded on the
worksheet you can easily view the chart and worksheet
data simultaneously. Also, by using embedded charts,
you can place multiple charts on one worksheet.
Because the embedded chart resides on a worksheet,
you must access that particular worksheet to modify a
chart. Remember, each sheet in a workbook is a
separate object, such as a Worksheet object or Chart
object. However, because an embedded chart resides
entirely within a particular worksheet, the chart

becomes a child to a Worksheet object. Actually the
Worksheet object contains a ChartObject
collection object, which contains all Chart objects
within the single worksheet.

Although at first glance an embedded chart appears
more complex because of the extra objects involved,
when you access the chart object on the Worksheet, it
contains the same child objects, properties, and
methods as a Chart sheet. For example, you use the
Legend object to make modifications to the legend for
the embedded chart.

CHART OBJECT CHILDREN OBJECTS

The complexity of the Chart object stems from the fact
that it contains so many child objects, which represent
the different components that make up the chart. Each
of these objects have their own properties and

methods necessary for making modifications to the
object, and some even have their own child objects.
The following table describes each of the child objects
for the Chart object.

153646-X Ch14.F 10/16/01 2:39 PM Page 256

CHART TYPES

If you look at the Chart Type dialog box within Excel,
you can see that Excel offers an enormous number of
different charts. Although Excel has 14 standard types
of charts, each chart type has at least two different sub-
types that you can select. Excel provides additional
customized charts on the Custom Types page. You

select the chart type by specifying an xlChartType
constant value for the ChartType property. The actual
list of available chart types is rather extensive because
it includes all of the chart sub-types. See Appendix A
for the available xlChartType constant values.

WORKING WITH CHARTS 14

257

CHART OBJECT CHILDREN OBJECTS (CONTINUED)

OBJECT DESCRIPTION

Axes Collection Collection of the Axis objects including AxisTitle, Border, Gridlines, and
TickLabels objects.

ChartArea Chart area including the Border, Font, and Interior objects.

ChartGroups Collection Collection of ChartGroup objects representing each group of data on the chart.

ChartObjects Collection Collection of the Chart objects on the sheet.

ChartTitle Represents the chart title. Includes Border, Characters, Font, and Interior
objects.

Corners Represents the corners of a 3-D chart.

DataTable Represents the chart data table. Includes a Border object.

Floor Represents the floor of a 3-D chart. Includes Border and Interior objects.

Hyperlinks Collection Contains one Hyperlink object for each hyperlink in the range of data.

Legend Represents the legend of the chart. Includes Font, Border, Interior, and
LegendEntries objects.

OLEObjects Collection Collection of OLEObjects in the sheet. Includes Border and Interior objects.

PageSetup Contains the page setup information including margin settings, paper size, and so on.

SeriesCollection Collection Contains Series objects representing the data in the chart. Includes Border,
Points, and Interior objects.

Shapes Collection Collection of the shapes within the chart.

Tab Represents a tab on a chart.

Walls Represents the walls of a 3-D chart. Includes Border and Interior objects.

153646-X Ch14.F 10/16/01 2:39 PM Page 257

⁄ Create a new subroutine.

Note: See Chapter 3 for information
on creating subroutines.

¤ Type Dim NewChart As
Chart, replacing NewChart
with the name of the
chart variable.

‹ Type Set NewChart =
ThisWorkbook.Charts.Add().

› Type NewChart.Name =
“New Chart Sheet”, replacing
“New Chart Sheet” with
the name for the chart.

You can use VBA to add a new chart sheet to your
workbook. When you create a chart, VBA creates a
new Chart object, which contains all the chart

options that correspond to the chart. Each Chart object
contains several objects that represent the settings for the
chart. For example, the ChartTitle object contains the
chart title as well as its font and border properties, and
other associated attributes. See the section “Chart Basics”
for more information concerning the various child objects
for the Chart object.

Because you have the option of either creating a new chart
sheet or embedding a chart in a worksheet, you may find
the creation of a Chart object a little confusing. When
creating a new chart sheet, you use the Chart object
directly, whereas with an embedded chart, you use a
ChartObjects object. See the section “Embed a Chart
within a Worksheet” for more information on creating
embedded charts.

To create a separate chart sheet, you use the Add method
with the Charts object. With this method, you can use
three different parameter values to specify the location of
the chart sheet and the number of sheets to add. You use
the Before parameter to specify the sheet before which
you want to place the new chart sheet. For example, to
place the new chart sheet at the beginning of the
workbook, you type a value of Sheets(1). You use the
After parameter to indicate the sheet after which you
want to place the new sheet. If you want to create multiple
chart sheets, you can use the Count parameter to indicate
the number of sheets to add.

When you create the new chart, you use the various
properties, methods, and a child object of the Chart object
to specify the type of chart, chart title, fonts used, and so on.

CREATE A CHART SHEET

EXCEL PROGRAMMING

258

CREATE A CHART SHEET

153646-X Ch14.F 10/16/01 2:39 PM Page 258

ˇ Type NewChart.ChartType
= xlColumnClustered,
replacing
xlColumnClustered with
the new chart type.

Note: See Appendix A for the
xlChartType constant values.

Á Type
NewChart.SetSourceData
Source:=Worksheets(“Sheet1”)
.Range(‘‘A1:A5”), replacing
Worksheets(“Sheet1”).
Range(“A1:A5”) with the
range of values for the chart.

‡ Switch to Excel and run
the macro.

Note: See Chapter 1 for more on
running a macro.

� Excel creates a new chart
sheet with the specified range
of data graphed.

WORKING WITH CHARTS 14
With any chart, you must specify the chart’s range of data. No matter
what other information you specify for a chart you create, if you omit the
data source information your chart appears blank. You use the
SetSourceData method to specify the data source for your chart. The
SetSourceData method has two different parameters, as illustrated in
the following code:
NewChart.SetSourceData(Source, Range)

You must use the Source parameter to specify the actual data range for
the chart. The Source parameter can reference any valid data range. See
Chapter 11 for more on defining a range of values. Remember when
working with a chart sheet that you also need to indicate the name of the
worksheet containing the data as part of the range reference. For
example, the following code references the range of cells contained in
Sheet1 in the same workbook.

Example:
NewChart.SetSourceData(Source:=Worksheets(“Sheet1”).Range(“A1:B15”)

With the SetSourceData method, you can use the PlotBy parameter,
which requires that you specify one of the xlRowCol constant values to
instruct Excel how to plot the data in the specified range. A value of
xlColumns instructs Excel to plot the data by columns. Use the value
xlRows to have Excel plot the values by rows.

259

153646-X Ch14.F 10/16/01 2:39 PM Page 259

⁄ Create a new subroutine. ¤ Dim EChart As ChartObject,
replacing EChart with the
name of the embedded
chart variable.

‹ Type Set EChart =
Sheets(“Sheet1”).ChartObjects
.Add(), replacing
Sheets(“Sheet1”) with
the name of the worksheet to
contain chart.

› Within the Add method
parentheses, type Left:=50,
Top:=30, Width:=400,
Height:=400, replacing the
numbers with the points
measurement values.

You can use VBA to embed a new chart to a worksheet
in the existing workbook. When you embed a chart,
Excel creates a new Chart object, which contains all

the options that correspond to the chart. Each Chart
object contains several objects that represent the settings
for the chart, such as the ChartTitle object, which
contains the chart title, its font and border properties, and
other associated attributes. See the section “Chart Basics”
for more information about the various child objects for the
Chart object.

When you embed a chart on a worksheet, the
corresponding Chart object that Excel creates becomes an
actual part of the Worksheet object. Because you can
place multiple embedded charts on one worksheet, the
Worksheet object consists of a ChartObjects collection
object that contains all Chart objects on the worksheet.
Because of this, when you add and remove embedded
charts, Excel requires you to use the ChartObjects
collection object.

To add a chart to an existing worksheet, you must use the
Add method with the ChartObjects object. The Add
method has four optional parameter values, which help you
indicate the location and size of the chart in points: Left,
Top, Width, and Height. You use the Left parameter to
specify the location of the chart in relation to the left edge
of column A. You use the Top parameter to specify the
location of the chart in relation to the top edge of row A.
You use the Width parameter to indicate the initial width,
and the Height parameter to specify the intial height of
the chart object.

You specify the type of chart that Excel creates using the
ChartType property. With this property you specify the
chart type using one of the XlChartType constant values.
For example, to create a line chart, you use the constant
xlLine. See Appendix A for the XlChartType constants.

EMBED A CHART WITHIN A WORKSHEET

EXCEL PROGRAMMING

260

EMBED A CHART WITHIN A WORKSHEET

153646-X Ch14.F 10/16/01 2:39 PM Page 260

ˇ Type
EChart.Chart.SetSourceData
Source:=Range(“A1:D5”),
replacing Range(“A1:D5”),
with the range reference.

Á Type
EChart.Chart.ChartType =
xl3DColumn, replacing
xl3DColumn with the
xlChartType constant for the
chart to create.

Note: See Appendix A for the
xlChartType constant values.

‡ Switch to Excel and run
the macro.

� Excel embeds the new
chart into the worksheet.

WORKING WITH CHARTS 14
The only real difference between embedded charts and chart sheets
is the fact that the Chart object for an embedded chart is part of
the ChartObject collection for the worksheet, whereas the Chart
object for a chart sheet is part of the Workbook object. Other than
that, if you compare the code that creates an embedded chart to
the code that adds a new chart sheet, you may notice that
specifying chart properties and methods requires reference to the
Chart object. This is due to the fact that when you create a new
chart sheet you create a new Chart object, but when you create
an embedded chart you add a Chart object to the ChartObjects
collection for a worksheet and, therefore, the Chart object
becomes a child of the ChartObjects collection object. To set the
chart type of an embedded chart, you specify the following:

Example:
Worksheets(“Sheet1”).ChartObject(1).Chart.ChartType =
xlColumnStacked

This code sets the chart type of the first chart object in the
worksheet named Sheet1 to a stacked column chart. If you compare
that code to the code required for changing the chart type of a
chart sheet, you see the similarities.

Example:
Sheets(“Chart1”).ChartType = xlColumnStacked

261

153646-X Ch14.F 10/16/01 2:39 PM Page 261

⁄ Create a new subroutine. ¤ Type Dim SelectChart
As Chart, replacing
SelectChart with the
chart variable.

‹ Type Set SelectChart =
ThisWorkbook.Charts
("Chart2"), replacing
ThisWorkbook.Charts
("Chart2") with the chart
reference.

› Type
SelectChart.ChartWizard.

When you create a new chart within Excel, the Chart
Wizard appears to step you through the process
and requires that you specify numerous

properties such as the chart location and the chart data
values. With VBA, you can use the ChartWizard method
to quickly format a chart without the need to set each
individual property.

You use the ChartWizard method with a specific Chart
object. This method includes eleven different optional
parameters, which you can only use with this method and
which enable you to set properties for the chart: Source,
Gallery, Format, PlotBy, CategoryLabels,
SeriesLabels, HasLegend, Title, CategoryTitle,
ValueTitle, and ExtraTitle. You must set any
additional properties individually.

You use the Source parameter to specify or modify any
valid range of data that creates the chart. Keep in mind that
when you work with a chart sheet, you must specify the

name of the worksheet containing the data. See Chapter 11
for more information on defining cell ranges.

You use the Gallery parameter to specify one of the
xlChartType constant values to indicate the desired chart
type. Specify a value of 1 to 10 for the Format parameter
to use one of the built-in formats for the selected chart
type.

You use an xlRowCol constant value of xlRows or
xlColumns for the PlotBy parameter, which determines
whether the data series is in rows or columns within the
specified range.You stipulate an integer value for the
CategoryLabels and SeriesLabels parameters to
indicate the number of category and series labels,
respectively. You state a value of True for HasLegend
parameter if you want a chart legend.

You enter the chart title as the value of the Title parameter,
and use the CategoryTitle and ValueTitle parameters
to stipulate category and value axis titles. For a 3-D chart,
specify a series axis title for the ExtraTitle parameter.

APPLY CHART WIZARD
SETTINGS TO A CHART

APPLY CHART WIZARD SETTINGS TO A CHART

EXCEL PROGRAMMING

262

153646-X Ch14.F 10/16/01 2:39 PM Page 262

ˇ Type Gallery:=xl3DLine,
replacing xl3DLine with
the appropriate
XlChartType constant.

Á Type Format:=2, replacing
2 with a value between 1
and 10 indicating the
built-in format.

‡ Type
CategoryLabels:=True.

° Type any additional
ChartWizard
parameter values.

· Switch to Excel and run
the macro.

� Excel modifies the selected
chart using the specified values

WORKING WITH CHARTS 14
When you use the
Gallery parameter
with the
ChartWizard
method you need to
specify a
xlChartType
constant value for
the chart. Although
the actual
xlChartType
constant values
available are rather
extensive, as
outlined in Appendix
A, you use only the
subset of constant
values with the
Gallery parameter:

CONSTANT DESCRIPTION

xlArea Plots individual values and colors in an area to emphasize
data series.

xlBar Displays data in horizontal columns to illustrate data
relationships.

xlColumn Displays data in vertical columns to illustrate data
relationships.

xlLine Plots individual data values on a continuous line to illustrate
data trends.

xlPie Displays each data in relationship to the entire whole.

xlRadar Plots each data seris on a separate axis.

xlXYScatter Plots multiple data sources across uneven time frames.

xlCombination Creates a combination chart.

xl3DLine Plots data on a continuous line with a 3-D representation.

xl3DPie Displays data relationships in relation to the entire pie with
a 3-D representation.

xl3DSurface Plots data values to create a 3-D topographical-looking chart.

xlDoughnut Displays data values as a relationship to the entire circle.

263

153646-X Ch14.F 10/16/01 2:39 PM Page 263

⁄ Create a new subroutine. ¤ Type Dim UseChart As
Chart, replacing UseChart
with the Chart variable.

‹ Type Set UseChart =
ThisWorkbook.Charts(1),
replacing
ThisWorkbook.Charts
(1) with the chart reference.

After you create a chart, you can redefine the range of
data Excel uses to display values on the chart by
adding a new data series. A data series consists of a

group of data values, which Excel displays on the chart. For
example, if you have a bar chart showing the monthly sales
in Dallas for each month the year, you can add another data
series which contained the sales in Miami for the year.

To define a new data series to add to the existing range of
data, you create a new Series object and add it to the
SeriesCollection collection object with the Add
method. The SeriesCollection collection object
represents all data series Excel plots on a specific chart, with
each data series representing a new Series object.

To add a new data series to the chart, you use the Add
method. When you use the Add method with a

SeriesCollection object, you can use five different
parameters: Source, Rowcol, SeriesLabels,
CategoryLabels, and Replace. You must specify a
Source parameter to indicate the data series to add to the
chart. Remember, you only need to specify the range for the
new data series; if the range you specify includes the
existing range, Excel duplicates those values on the chart.

Use the Rowcol parameter to indicate whether the new
values are in rows or columns by specifying a constant of
xlColumns or xlRows. Setting the SeriesLabels and
CategoryLabels parameters indicates that the first row
or column contains the corresponding labels. If you specify
a value of True for the CategoryLabels parameter and
the Replace parameter, Excel replaces the current category
labels with the labels from the new range.

ADD A NEW DATA SERIES TO A CHART

EXCEL PROGRAMMING

264

ADD A NEW DATA SERIES TO A CHART

153646-X Ch14.F 10/16/01 2:39 PM Page 264

› Type
UseChart.SeriesCollection.
Add Source:=Worksheets
(“Sheet1”).Range(“D1:D7”),
replacing Worksheets
(“Sheet1”).Range
(“D1:D7”) with the range
to add to the chart.

ˇ Switch to Excel and run
the macro.

� Excel adds the specified
data series to the chart.

WORKING WITH CHARTS 14

After you specify the range of data for a chart, you can
extend the values used of particular data series. When
you extend a data series, you add additional data
values to the end of a particular data series. You can
extend an existing data series collection using the
Extend method with the SeriesCollection object.
The Extend method provides three different
parameters for extending the data series. The Source
parameter indicates the source of the data values to
add to the existing data series. You can use the
Rowcol parameter to stipulate whether the new
values are in rows or columns. You specify the value
for this parameter with either the xlRow or xlColumn
parameter. If the new range contains category labels in
the first row, specify True for the CategoryLabels
parameter. The following code illustrates how to
extend a data series:

Example:
SelectChart2.SeriesCollection.Extend
Source:=Worksheets(“Sheet1”).Range(“A10:D13”)

You can remove a series for a chart using
the Delete method. To remove a data
series from a chart, you need to use the
index value of the series you want to
remove, as illustrated in the following
code, which removes the second data
series:

Example:
SelectChart2.SeriesCollection(2).Delete

265

153646-X Ch14.F 10/16/01 2:39 PM Page 265

⁄ Create a new subroutine.

¤ Type Dim SelectChart As
Chart, replacing
SelectChart with the
name of the chart variable.

‹ Type Set SelectChart =
ThisWorkbook.Charts(1),
replacing ThisWorkbook.
Charts(1) with the chart to
format.

› Type With SelectChart.

Note: See Chapter 4 for more
information on using the With
statement.

ˇ Type .ChartArea.Font.Name
= “Tahoma”, replacing
“Tahoma” with the name of
the font to use for the chart.

Á Type .ChartArea.Font.Color
= RGB(0, 0, 255), replacing
(0, 0, 255) with the RGB
color values.

As with all elements of a chart, you can customize the
text that displays on the chart by changing the font
attributes. When Excel adds text to a chart either as

the chart title, axis labels, or even data labels, it applies
default formatting to the specified text. For example,
typically the text for a chart title is formatted using the
default font, normally Arial, and bold with a font size of 12
point. You can customize the text of the ChartTitle
object, and all other objects on the chart using the Font
object.

The Font object enables you to set the font attributes for
all text values. You use the properties associated with the
Font object to set the font attributes you want to modify.
By setting the font attributes, you ensure that the
appearance of the text on the chart is uniform.

Excel enables you to format the text that displays on the
chart. When you use the Font object properties with the
ChartTitle object, you modify the look of the chart title.
To change the text that Excel displays as the legend text, use
the Font object properties with the Legend object. You
can set the font attributes for the entire chart using the
Font object with the ChartArea object. For example, if
you want to change the font for the entire chart, you apply
the Font object properties to the ChartArea object.

When you work with the ChartArea object, you can set the
font settings for the entire chart and then use the individual
objects to customize various portions of the chart. The
following objects enable you to set the Font object:
ChartTitle, DataTable, Legend, Characters,
AxisTitle, DataLabel, and TickLabels.

FORMAT CHART TEXT

EXCEL PROGRAMMING

266

FORMAT CHART TEXT

153646-X Ch14.F 10/16/01 2:39 PM Page 266

‡ Type With .ChartTitle.Font.

° Type .Size = “14” replacing
“14” with the font size for the
chart title.

· Specify additional Font
property values.

‚ Type End With.

— Type End With.

± Switch to Excel and run
the macro.

� Excel applies the specified
text formatting to the chart.

WORKING WITH CHARTS 14

You may not always want to apply the same font settings to
the entire chart object. For example, you may want to
underline the first character in the chart title. To format
specific characters with the text of an object, the
AxisTitle, ChartTitle, and DataLabel objects enable
you to use the Characters object. When you utilize this
object, you specify the character within the text string
where formatting should start as well as the number of
characters to format. For example, to format the first
character in the chart title that you want to underline, you
type code similar to the sample coding. Notice that the
Characters object includes two parameter values. The first
parameter value, in example 1, indicates the character in
the text string where Excel first applies the formatting. The
second parameter value indicates the number of characters
to which Excel applies formatting.

267

TYPE THIS:

ThisWorkbook.Charts(1).ChartTitle.
Characters(1,2).Font.Underline = True

RESULT:

Excel underlines the first and second
characters in the chart title, but all
remaining characters maintain their
original font settings. If you already
set the BOLD property of the
ChartTitle object, the first two
characters are not bold and
underlined.

153646-X Ch14.F 10/16/01 2:39 PM Page 267

⁄ Create a new subroutine.

¤ Type Dim NewChart As
Chart, replacing NewChart
with the chart variable.

‹ Type Set NewChart =
ThisWorkbooks.Charts.Add().

› Type
NewChart.SetSourceData
Source:=Workbooks(“Sheet1”)
.Range(“A1:D9”), replacing
Workbooks(“Sheet1”)
.Range(“A1:D9”) with the
range of data for the chart.

ˇ Type NewChart.ChartType
= xlColumnClustered,
replacing
xlColumnClustered with
the chart type constant.

Á Type NewChart.PlotBy =
xlColumns.

You can create charts that apply different chart types to
each data series. For example, you may want to create
a column chart to display one series of data and then

add another series that plots the data as a continuous line
on the chart. These types of chart features enable you to
create more complex-looking charts. By using multiple chart
types, you create a chart that appears as a combination of
various types of charts.

To set the chart type for a data series, you need to specify
the SeriesCollection object that represents the data
series that you want to modify. The SeriesCollection
collection object contains each of the data series in the
range of data on the chart as an individual
SeriesCollection object. You reference an individual
object using the corresponding index value, which Excel
numbers from 1 to the number of data series in the range

of data for the chart. For example, to reference the second
data series, you can specify SeriesCollection(2).

To set the chart type for a data series, you need to modify
the ChartType property for the specific
SeriesCollection object. When you initially create your
chart, you can either use this method to set the chart type
for each individual data series or you can set the chart type
for the entire chart, and then modify the ChartType
property for the individual data series that you want to
change.

When you utilize the ChartType property, you need to
assign it one of the xlChartType constant values that
represent the chart type you want to use for the data series.
See Appendix A for a list of the xlChartType constant
values that you can assign to the ChartType property.

CREATE CHARTS WITH
MULTIPLE CHART TYPES

EXCEL PROGRAMMING

268

CREATE CHARTS WITH MULTIPLE CHART TYPES

153646-X Ch14.F 10/16/01 2:39 PM Page 268

‡ Type NewChart.Series
Collection(2).ChartType =
xlLine, replacing 2 with the
series reference and xlLine
with the desired chart type.

° Switch to Excel and run
the macro.

� Excel creates a new chart
using the first chart type
value for the entire chart and
modifying the chart type for
the referenced data series.

WORKING WITH CHARTS 14
You can use a different chart type for each data
series. Excel keeps track of the different series
chart types and groups the common types
together as ChartGroup objects. Each
ChartGroup object contains one or more data
series with the same chart type. Excel stores all
ChartGroup objects within the ChartGroups
collection object, which you can access via the
ChartGroup property.

Because of these series groupings, the
ChartGroups object provides methods for
returning the collection of the ChartGroup
objects that correspond to the particular type.
For example, if you want to access the line chart
type ChartGroup objects, you use the
LineGroups method. The example illustrates
how to count the number of column chart types
in a chart. You can use the methods in the table
with the ChartGroup objects.

Example:
DataSeriesCount =
ThisWorkbook.Charts(1).ColumnGroups.Count

METHOD DESCRIPTION

AreaGroups Determines the number of series
with an area data type.

BarGroups Determines the number of series
with a bar chart data type.

ColumnGroups Determines the number of series
with a column chart data type.

DoughnutGroups Determines the number of series
with a doughnut chart data type.

LineGroups Determines the number of series
with a line chart data type.

PieGroups Determines the number of series
with a pie chart data type.

269

153646-X Ch14.F 10/16/01 2:39 PM Page 269

⁄ Create a new subroutine.

¤ Type Dim NewChart As
Chart, replacing NewChart
with the chart variable.

‹ Type Set NewChart =
ThisWorkbook.Charts.Add().

› Type NewChart.ChartType
= xlLine.

ˇ Type
NewChart.SetSourceData
Source:=Worksheets(“Sheet1”)
.Range(“A1:C5”), replacing
Worksheets(“Sheet1”).
Range(“A1:C5”) with the
data range.

Á Type With
NewChart.LineGroups(1).

‡ Type .HasUpDownBars
= True.

You can use up and down bars on a line chart to
illustrate the variations in different data series shown
on a line chart. By assigning up and down bars to a

line chart, you can compare the first data series to the last
data series to easily view where the values ascend or
descend. You place up and down bars on your chart using
the HasUpDownBars property.

Part of the DownBars object, down bars connect the points
on the first data series with the lower values in the final
series. Conversely, up bars, part of the UpBars object,
connect the points on the first data series with the higher
values in the final series.

You can customize the look of the UpBars and DownBars
objects with the Border and Interior object properties.
The Interior object determines how the interior of each

bar appears, for example, whether the bar has a solid color
or a pattern. The Border object controls the border drawn
around each bar. You customize each of these objects with
the corresponding properties. If you add up and down bars
to your chart, you want to customize the color of each bar
type so that you can easily distinguish the difference
between the up bars and the down bars. You customize the
color of the bar types using the Color property of the
Interior object.

When you use the Color property, you specify the color
you want to apply with the RGB function. This function
accepts three values in the range of 0 to 255, indicating the
amount of red, green, and blue in the color. The color
values range from black at 0, 0, 0 and white at 255, 255, 255.

DETERMINE VARIATIONS
IN A SERIES OF DATA

EXCEL PROGRAMMING

270

DETERMINE VARIATIONS IN A SERIES OF DATA

153646-X Ch14.F 10/16/01 2:39 PM Page 270

° Type UpBars.Interior.Color
= RGB(255, 255, 0), replacing
(255, 255, 0) with the
color reference.

· Type DownBars.Interior
.Color =RGB(0, 0, 255),
replacing(0, 0, 255) with
the color reference.

‚ Type additional properties
for the up and down bars.

— Type End With.

± Switch to Excel and run
the macro.

� Excel creates the line chart
using up and down bars to
indicate differences in
point values.

WORKING WITH CHARTS 14

271

You can use Border and Interior objects with several of the Chart object
child objects to customize the border and interior settings. Each object has
multiple properties to customize it as shown in the following table:

PROPERTY OBJECT DESCRIPTION

Color Border Interior Uses the RGB function to select the color by specifying a value
between 0 and 255 for each color element: red, green, and blue.

ColorIndex Border Interior An index value between 1 and 56 indicating the desired palette color.

LineStyle Border An xlLineStyle constant from Appendix A specifying the style
of the border line.

Parent Border Indicates the parent object.

Weight Border An xlBorderWeight constant from Appendix A specifying the
line weight of the border.

InvertIfNegative Interior A value of True inverts the interior pattern for negative values.

Pattern Interior An xlPattern constant from Appendix A indicating the pattern
for the interior.

PatternColor Interior Uses the RGB function to select the pattern color by specifying a
value between 0 and 255 for each color element: red, green, and
blue.

PatternColorIndex Interior An index value between 1 and 56 indicating the desired palette
color for the pattern.

153646-X Ch14.F 10/16/01 2:39 PM Page 271

⁄ Create a new subroutine. ¤ Type SelectChart As Chart,
replacing SelectChart
with the chart variable.

‹ Type Set SelectChart =
ThisWorkbook.Charts(1),
replacing
ThisWorkbook.Charts(1)
with the chart to modify.

› Type SelectChart.HasData
Table = True.

You can add data tables to any chart you create. You
use data tables to provide a list of the values you see
on the corresponding chart. Because the data values

that Excel plots on a chart can come from different ranges
of data, data tables work well for showing the actual data
values from the chart in a concise table.

Excel stores the data table associated with a chart in the
DataTable object. The HasDataTable property,
associated with the Chart object, specifies whether a data
table actually displays for the selected chart. This property
only accepts Boolean values of either True or False. To
display a data table for a chart, you need to set this property
to True.

After you set the HasDataTable property, you can
customize the data table using the properties associated with
the DataTable object. Just like the other objects associated

with the Chart object, the DataTable object has its own
list of associated properties and methods. For example, you
can customize the font settings and border settings for the
data table. You can specify the font for the data table using
the Font property. With the Font property, you use the
properties associated with the Font object to specify the
actual font properties of the text. For example,
DataTable.Font.Name = “Arial” specifies that the
data table uses the Arial font. See the section “Format Chart
Text” for more information on working with the Font object
on a chart.

You select and unselect the display of borders for
the data table using the HasBorderHorizontal,
HasBorderOutline, and HasBorderVertical
properties. By default, Excel displays borders on a
data table. The Border object contains the entire borders
for the data table. You can customize the border using the
associated properties.

ADD A DATA TABLE TO THE CHART

EXCEL PROGRAMMING

272

ADD A DATA TABLE TO THE CHART

153646-X Ch14.F 10/16/01 2:39 PM Page 272

ˇ Type
SelectChart.DataTable.Font
.Name = “Tahoma”, replacing
“Tahoma” with the
font name.

Á Type SelectChart.DataTable
.Border.Color = RGB(0, 0, 255),
replacing (0, 0, 255)
with the border color.

� Type any additional chart
or data-table-related
statements.

‡ Switch to Excel and run
the macro.

� Excel displays the chart
with the data table at
the bottom.

WORKING WITH CHARTS 14

When you add a data table to a chart, you have
the option of combining the chart legend with
the data table. By doing so, you can create a
more readable chart because you can quickly see
which chart series has the specified data values.

To create a data table containing the chart
legend, you need to set the ShowLegendKey
property to True for the DataTable object. By
default, Excel sets this value to True, but it is a
good idea to specify this value to ensure its
proper setting. Use the following code to set the
value of the ShowLegendKey property.

Example:
ThisWorkbook.Charts(1). DataTable.
ShowLegendKey = True

If you display the legend as part of the data table,
you typically do not want the legend to display
separately on your chart. To hide the legend, you
can set the HasLegend property for the Chart
object to False, as illustrated with the following
code:

Example:
ThisWorkbook.Charts(1).HasLegend = False

273

153646-X Ch14.F 10/16/01 2:39 PM Page 273

⁄ Create a new subroutine.

¤ Type Dim SelectChart As
Chart, replacing
SelectChart with the
chart variable.

‹ Type Set SelectChart =
ThisWorkbook.Charts(1),
replacing
ThisWorkbook.Charts
(1) with the chart reference.

› Type With
SelectChart.Axes(xlValue),
replacing xlValue with the
axis constant value.

ˇ Type .HasTitle = True.

Á Type .AxisTitle.Text =
“Value Axis”, replacing
“Value Axis” with the
axis title.

You customize each axis on your chart with the Axis
object properties and methods. Most charts that you
create have a default of two different axes, the

category axis and the values axis. For example, if you look
at a standard column chart, the category axis runs
horizontally across the bottom of the chart while the values
axis runs vertically on the left side of the chart. When
dealing with 3-D charts, there is a third series axis.

Each chart axis is a separate Axis object. The Axes
collection object contains all Axis objects for the chart. You
can use the Axes method to access an individual chart
Axis object. When you use the Axes method, specify a
value for the Type parameter indicating the axis that you
want to remove. Specify one of the XlAxisType constants
to indicate the axis type for this parameter. You can specify
xlValue for the value axis, xlCategory for the category
axis, or xlSeriesAxis for the third axis on the 3-D chart.

You can customize each axis using the AxisTitle,
Border, Gridlines, DisplayUnitLabel, and
TickLabels child objects. Each of these objects have
additional child objects and corresponding properties and
methods. The AxisTitle object represents the title that
Excel adds to the corresponding axis. You can specify the
text that displays for the axis title with the Caption
property. You can customize the appearance of the axis title
by calling the Font object properties. See the section
“Format Chart Text” for more information on working with
the Font object on a chart.

You set the HasTitle property to True to specify that the
axis has a title. You can also customize the other objects in
a similar fashion. For example, the Border object
represents the axis border along the chart. You can use the
Color property to change the color of that axis.

CUSTOMIZE THE CHART AXIS

EXCEL PROGRAMMING

274

CUSTOMIZE THE CHART AXIS

153646-X Ch14.F 10/16/01 2:39 PM Page 274

‡ Type .HasMajorGridlines
 = True.

° Type .MajorGridlines.
Border.Color = RGB(0, 0, 255),
replacing (0, 0, 255)
with the color reference.

· Type .MajorGridlines.
Border.LineStyle = xlDash,
replacing xlDash
with the xlLineStyle
constant value.

Note: See Appendix A for the
xlLineStyle values.

‚ Type End With.

— Switch to Excel and run
the macro.

� Excel updates the
specified axis.

WORKING WITH CHARTS 14
You can add gridlines on a chart so that a user can determine a value
at a specific point. Gridlines run either horizontally or vertically from
the corresponding axis and extend the tick marks. You can use the
Gridlines object to customize the gridline settings for a particular
axis by adding both major and minor gridlines. A major gridline
appears at each label on the axis and minor gridlines appear at even
intervals between the major gridlines. The following code illustrates
how to use the HasMajorGridlines property to turn on the
gridlines and how to customize the appearance of the gridlines with
the MajorGridlines property. Notice that the code customizes the
appearance of the gridlines for the specified axis by utilizing the
Border object. You can use the following properties with the Border
object: Color, ColorIndex, LineStyle, Parent, and Weight.

Example:
With Charts(1).Axes(.xlValue)

.HasMajorGridlines = True

.MajorGridlines.Border.Color = RGB(0.255,0)

.MajorGridlines.Border.LineStyle = xlDot

.MajorGridlines.Border.Weight = xlThin

End With

275

153646-X Ch14.F 10/16/01 2:39 PM Page 275

An event occurs within Excel whenever you perform
any type of action. For example, if you click a
particular cell, a Click event occurs. You can use

these events to trigger the execution of particular
procedures by creating event-handling procedures. Event-
handling procedures are exactly what the name describes,
procedures that execute when a particular event occurs.

You can monitor five different types of events within Excel:
workbook, worksheet, chart, UserForm, and
application events. To trap or capture an event with an
event-handling procedure, you must place the procedure
code in the correct type of module. For example, you must
place all workbook-related events in the ThisWorkbook
object code module.

UNDERSTANDING EXCEL EVENTS

EXCEL PROGRAMMING

276

WORKBOOK EVENTS

Excel associates workbook level events with the
corresponding workbook where they reside. You need
to place the procedures within the ThisWorkbook

object module. You create this procedures by naming
them Workbook_event name. The following table lists
each of the available workbook events.

EVENT DESCRIPTION

Activate Excel activates the workbook.

AddinInstall An add-in installs a workbook.

AddinUninstall An add-in uninstalls a workbook.

BeforeClose A workbook closes. See the section “Run a Procedure before Closing a Workbook.”

BeforePrint Excel prints a portion of a workbook.

BeforeSave Excel saves a workbook. See the section “Run a Procedure before Saving a Workbook.”

Deactivate Excel deactivates a workbook.

NewSheet Excel adds a new sheet to a workbook.

Open Excel opens a workbook. See the section “Run a Procedure as a Workbook Opens.”

PivotTableCloseConnection Occurs after a Pivot table report closes the data source connection.

PivotTableOpenConnection Occurs after a Pivot table report opens the data source connection.

SheetActivate Excel activates a sheet in the workbook.

SheetBeforeDoubleClick Occurs before a user double-clicks a sheet.

SheetBeforeRightClick Occurs before a user clicks with the right mouse button.

SheetCalculate Excel calculates a sheet.

SheetDeactivate Excel deactivates a sheet.

SheetFollowHyperlink A user clicks a hyperlink on a sheet.

SheetPivotTableUpdate Excel updates a sheet of a Pivot table report.

SheetSelectionChange The selection changes on a workbook.

WindowActivate Excel activates a workbook window.

WindowDeactivate Excel deactivates a workbook window.

WindowResize Excel resizes a workbook window.

163646-X Ch15.F 10/16/01 2:40 PM Page 276

AUTOMATING PROCEDURES WITH EXCEL EVENTS 15
WORKSHEET EVENTS

Excel associates worksheet-level events with the
currently selected worksheet. You need to place
event-handling procedures related to a worksheet in

the code module for the worksheet object. The
following table lists each of the available worksheet
events.

EVENT DESCRIPTION

Activate Excel activates the worksheet.

BeforeDoubleClick Occurs before the user double-clicks the worksheet with the mouse.

BeforeRightClick Occurs before the user clicks the worksheet with the right mouse button.

Calculate Excel calculates the worksheet.

Change Occurs when a user or external link modifies cells on the worksheet. See the
section “Monitor a Range of Cells for Changes.”

Deactivate Excel deactivates the worksheet.

FollowHyperlink User selects a Hyperlink on the worksheet.

PivotTableUpdate Occurs after a Pivot table report is updated on the worksheet.

SelectionChange Selection changes on the worksheet.

CHART EVENTS

Excel associates Chart level events with the currently
selected chart sheet. You need to place event-handling
procedures related to a chart in the code module for

the chart object. The following table lists the available
chart events for which you can create event-handling
procedures.

EVENT DESCRIPTION

Activate Excel activates the chart sheet.

BeforeDoubleClick Occurs before the user double-clicks the chart sheet with the mouse.

BeforeRightClick Occurs before the user clicks the chart sheet with the right mouse button. See
the section “Run a Procedure when Right-Clicking a Chart.”

Calculate Occurs after Excel plots the chart.

Deactivate Excel deactivates the chart sheet.

DragOver The user drags a range of cells over a chart.

DragPlot The user drags and drops a range of cells onto the chart.

MouseDown The user presses a mouse button over the chart.

MouseMove The position of a mouse changes over a chart.

MouseUp The user releases a mouse over the chart.

Resize The user resizes the chart.

Select The user selects a chart element.

SeriesChange Occurs when the user changes the value of a chart data point.

277

163646-X Ch15.F 10/16/01 2:40 PM Page 277

UNDERSTANDING EXCEL EVENTS

EXCEL PROGRAMMING

278

USERFORM EVENTS

Excel associates UserForm events not only with the
form but also with each of the controls that exist on
the form. You need to place event-handling procedures

related to a UserForm in the code module for the
UserForm object. The following table lists the available
UserForm events.

EVENT DESCRIPTION

Activate Excel activates the UserForm.

AddControl Excel adds a run-time control to the UserForm.

BeforeDragOver The user performs a drag-and-drop operation.

BeforeDropOrPaste The user releases the mouse button to paste the data from the drag-and-drop
operation.

Click The user clicks the mouse on a UserForm object. See Chapter 14 for
information on capturing the Click event.

DblClick The user double-clicks the mouse on a UserForm object.

Deactivate The user deactivates the UserForm.

Error Excel detects a UserForm control error.

KeyDown The user presses a key.

KeyPress The user presses an ANSI key. An ANSI key produces a visible character.

KeyUp The user releases a key.

MouseDown The user presses a mouse button.

MouseMove The user moves a mouse on the UserForm.

MouseUp The user releases the mouse button.

QueryClose Excel closes the UserForm.

RemoveControl Excel removes a control from the UserForm at run-time.

Scroll The user repositions a Scroll box on a control.

Terminate Excel terminates the UserForm.

Zoom The user zooms the UserForm.

163646-X Ch15.F 10/16/01 2:40 PM Page 278

AUTOMATING PROCEDURES WITH EXCEL EVENTS 15

279

APPLICATION EVENTS

Application events include all events that the
Application object recognizes. To access an
application event you create a class module to contain
your application event-handling procedure code. See
the section “Run a Procedure when Excel Creates a

Workbook” for more information on placing event-
handling code in a class module.

The following table provides a list of the application-
level events that occur within Excel.

EVENT TYPE DESCRIPTION

Application An event that occurs for the application, in this case Excel. For
example, Excel triggers the NewWorkbook event when it creates a
new workbook.

NewWorkbook Occurs when Excel creates a new workbook. See the section “Run a
Procedure when Excel Creates a Workbook”

SheetActivate Excel activates any sheet in any workbook.

SheetBeforeDoubleClick Event occurs before the user double-clicks any sheet with the mouse.

SheectBeforeRightClick Event occurs before the user clicks any sheet with the right mouse
button.

SheetCalculate Excel calculates any worksheet.

SheetChange Cells on a worksheet change either due to a user or an external link.

SheetFollowHyperlink A user clicks a hyperlink on a sheet.

SheetPivotTableUpdate Excel updates a sheet of a Pivot table report.

SheetSelectionChange The selection changes on any worksheet.

WindowActivate Excel activates a worksheet window.

WindowDeactivate Excel deactivates a worksheet window.

WindowResize The user resizes a worksheet window.

WorkbookActivate The user activates a workbook.

WorkbookAddInInstall An add-in installs a workbook.

WorkbookAddInUninstall An add-in uninstalls a workbook.

WorkbookBeforePrint Excel prints an open workbook.

WorkbookBeforeSave Excel saves an open workbook.

WorkbookDeactivate Excel deactivates a workbook.

WorkbookNewSheet Excel adds a new sheet to an open workbook.

WorkbookOpen Excel opens a workbook.

WorkbookPivotTableCloseConnection Occurs after a Pivot table report closes the data source connection.

WorkbookPivotTableOpenConnection Occurs after a Pivot table report opens the data source connection.

163646-X Ch15.F 10/16/01 2:40 PM Page 279

⁄ On the Projects
window, locate the workbook
where you want to add the
Workbook_Open subroutine.

¤ Double-click the
ThisWorkbook object
node under the workbook.

� The code module opens
for the ThisWorkbook
object.

‹ In the Object box, click
 and then click the
Workbook option.

ThisWorkbook

Workbook

You can create a procedure that runs automatically
each time a particular workbook opens. Because this
type of procedure only executes once as the

workbook opens, it works well for launching custom menus
and toolbars, opening other workbooks, determining if
specific conditions are met, or displaying welcome
messages. The procedure executes when the workbook
opens by catching the Open event that the opening
workbook triggers.

To create a procedure that executes when a workbook
opens, you create a new procedure and add it to the
ThisWorkbook object code module for the particular
workbook. In fact, all event-handling procedures that you
create for monitoring workbook events must reside within
the ThisWorkbook object to have Excel execute them
automatically. To create a procedure that executes
when a workbook opens, you name the procedure
Workbook_Open.

Although the procedure resides in the ThisWorkbook
object code module, it can access other procedures within
the same workbook. Therefore, you can create a
Workbook_Open procedure that calls procedures located
in other modules.

If you have a procedure that you want to execute whenever
Excel opens, you must place the procedure within the
ThisWorkbook object for the Personal Macro Workbook,
Personal.xls. Because the Personal Macro Workbook
always loads as a hidden workbook in Excel, any procedures
within this workbook appear to execute as Excel opens.
Keep in mind, however, that Excel associates the Personal
Macro Workbook with an individual user.

Remember, you can keep a Workbook_Open procedure
from executing for a particular workbook by holding down
the Shift key as the workbook opens. Because workbooks
typically open rather quickly, you need to make sure you
press and hold the Shift key as soon as you select the
workbook.

RUN A PROCEDURE AS A WORKBOOK OPENS

EXCEL PROGRAMMING

280

RUN A PROCEDURE AS A WORKBOOK OPENS

163646-X Ch15.F 10/16/01 2:40 PM Page 280

� The Visual Basic Editor
creates a new Private
subroutine named
Workbook_Open.

› Type the VBA code to run
when the workbook opens.

ˇ Click the Save button ()
to save the workbook
including the new subroutine.

Á Close Excel.

‡ Open the workbook in
Excel.

� The Workbook_Open
procedure executes the
specified VBA code as
the workbook opens.

AUTOMATING PROCEDURES WITH EXCEL EVENTS 15

You can use the Open method of
the Workbooks collection object to
specify a workbook that Excel
should open whenever the current
workbook opens. For example, if
your workbook relies on data
values within another workbook,
you can open that workbook
whenever the current workbook
opens. See Chapter 9 for more
information on using the Open
method to specify the workbook
to open.

You can use the Object drop-down list on the Code window to
quickly create your Workbook_Open subroutine. The Object
drop-down list contains the available objects for which you can
create subroutines within the current code module. For
example, if you access the ThisWorkbook code module, the
only available object is Workbook.

When you select the Workbook object from the Objects drop-
down list, the Visual Basic Editor automatically creates a private
subroutine called Workbook_Open. This is because the default
event for the Workbook object is the Open event. If you view
the Procedure drop-down list, you see all the available events
for the Workbook object. If you select another event from the
list, the Visual Basic Editor creates a new subroutine for that
event.

281

163646-X Ch15.F 10/16/01 2:40 PM Page 281

⁄ On the Projects
window, locate the workbook
where you want to add the
Workbook_BeforeClose
subroutine.

¤ Double-click the
ThisWorkbook object
node under the workbook.

� The code module opens
for the ThisWorkbook
object.

‹ In the Object box, click
 and then click the
Workbook option.

› In the Procedure box,
click and then the
BeforeClose option.

ThisWorkbook

BeforeClose

You can create a procedure that runs automatically
before a particular workbook closes in Excel. Because
this type of procedure only executes once as the

workbook closes, it works well for removing custom menus
and toolbars loaded when the workbook opened, closing
other workbooks, recalculating, or even automatically
saving the workbook. The procedure executes when the
workbook closes by catching the BeforeClose event that
the closing workbook triggers.

To produce a procedure that executes when a workbook
closes, you create a new procedure and add it to the
ThisWorkbook object code module for the particular
workbook. In fact, all event-handling procedures that you
create for monitoring workbook events must reside within
the ThisWorkbook object in order for Excel to execute
them automatically. To create a procedure that executes
when a workbook closes, you name the procedure
Workbook_BeforeClose.

Although the procedure resides in the ThisWorkbook
object code module, it can access other procedures within

the same workbook. Therefore, you can create a
Workbook_BeforeClose procedure that calls procedures
located in another module.

If you have a procedure that you want Excel to execute
whenever an application closes, you must place the
procedure within the ThisWorkbook object for the
Personal Macro Workbook, Personal.xls. Because the
Personal Macro Workbook always loads as a hidden
workbook in Excel, and typically only closes when you close
Excel, any procedures within this workbook appear to
execute as Excel closes. Keep in mind that Excel associates
the Personal Macro Workbook with an individual user.

The BeforeClose event has one parameter, Cancel, that
Excel passes to the procedure when the event is triggered.
You can change what Excel does after the BeforeClose
event completes by changing the value of the Cancel
parameter. If the Cancel parameter has a value of False,
which is the default, the workbook closes as normal. If you
set the value of the Cancel parameter to True, Excel does
not close the workbook and cancels the closing process.

RUN A PROCEDURE BEFORE
CLOSING A WORKBOOK

EXCEL PROGRAMMING

282

RUN A PROCEDURE BEFORE CLOSING A WORKBOOK

163646-X Ch15.F 10/16/01 2:40 PM Page 282

� The Visual Basic
Editor creates a new
Private subroutine named
Workbook_BeforeClose.

ˇ Type the VBA code to run
before the workbook closes.

Á Close the workbook.

� The Workbook_BeforeClose
procedure executes the specified
VBA code as the workbook before
closing the workbook.

AUTOMATING PROCEDURES WITH EXCEL EVENTS 15

You can use the Me operator to work in a code module for a
specific Excel object. When you use the Me operator, it references
the object related to the code module. For example, if you create
code in the ThisWorkbook object module, all code in the module
correlates to the actual workbook object. When you use the Me
operator, you reference the workbook object. Therefore, when you
add the code Me.Close to a code module, Excel closes the
corresponding workbook.

The code Me.Close is equivalent to using the ThisWorkbook
object reference.

Keep in mind that with the ThisWorkbook object code module,
you can use either the Me object or the ThisWorkbook object to
reference the current workbook, a condition not true in a standard
code module. If you create a code module that you do not
associate with an object, you cannot use the Me operator to
reference an object without generating an error.

You can also use the Me operator when working with UserForm
code modules. In doing so, the Me operator references the
corresponding UserForm and not the controls that you have
added to the UserForm.

283

163646-X Ch15.F 10/16/01 2:40 PM Page 283

⁄ On the Projects
window, locate the workbook
where you want to add the
Workbook_BeforeSave
subroutine.

¤ Double-click the
ThisWorkbook object
node under the workbook.

� The code module opens
for the ThisWorkbook
object.

‹ In the Object box, click
 and then the Workbook
option.

› In the Procedure box,
click and then the
BeforeSave option.

ThisWorkbook

BeforeSave

You can create a procedure that runs automatically
before Excel saves a particular workbook. By creating
this type of procedure, you can customize the method

you use to save the workbook. For example, you may always
want to display the Save As dialog box whenever the user
selects the Save or SaveAs option in Excel. This procedure
executes whenever you select the Save or the SaveAs
options within Excel for the corresponding workbook.

To create a procedure that executes before saving a
workbook, you create a new procedure using the
BeforeSave event and add it to the ThisWorkbook
object code module for the particular workbook. In fact, all
event-handling procedures that you create for monitoring
workbook events must reside within the ThisWorkbook
object to have Excel execute them automatically. To create a
procedure that executes before Excel saves the workbook,
you name the procedure Workbook_BeforeSave.

Although the procedure resides in the ThisWorkbook
object code module, it can access other procedures within
the same workbook. Therefore, you can create a
Workbook_BeforeSave procedure that calls procedures
located in another code module within the same workbook.

The BeforeSave event has two parameters that Excel
passes to your procedure when the event triggers. The
SaveUI parameter indicates whether the Save As dialog
box displays during the Save command. Set the value of the
SaveUI parameter to True to always display the Save As
dialog box. If the Cancel parameter has a value of False,
Excel saves the workbook. If you set the value of the
Cancel parameter to True, Excel does not save the
workbook. Within the Workbook_BeforeSave procedure
you can change the value of the Cancel parameter to
specify whether the workbook actually saves.

RUN A PROCEDURE BEFORE
SAVING A WORKBOOK

EXCEL PROGRAMMING

284

RUN A PROCEDURE BEFORE SAVING A WORKBOOK

163646-X Ch15.F 10/16/01 2:40 PM Page 284

� The Visual Basic
Editor creates a new
Private subroutine named
Workbook_BeforeSave.

ˇ Type the VBA code to run
before Excel saves the
workbook.

Á Switch to Excel.

‡ Click Save. � The Workbook_BeforeSave
procedure executes the specified VBA
code before saving the workbook.

AUTOMATING PROCEDURES WITH EXCEL EVENTS 15
When working with VBA, you use the ByVal keyword to specify that only the
value of a variable passes to a procedure. VBA uses the ByVal keyword with some
parameters. For example, the Workbook_BeforeSave subroutine includes a
SaveAsUI parameter that passes into the subroutine by value only as indicated
with the ByVal keyword. Using the ByVal keyword, the value of the parameter
passes into the procedure that uses the SaveAsUI variable. If you change the
value, it does not affect the actual variable. To better explain this, consider the
following example, where the message box displays a value of 10 because the
value of TestVal passes in the Test2 subroutine by value. In other words,
instead of using the variable TestVal, the Test2 subroutine uses a copy of the
original TestVal variable. Any changes you make within the Test2 subroutine
do not pass back to the original subroutine, Test1.

Example:
Sub Test1()

Dim TestVal As Integer

TestVal = 12

Call Test2(TestVal)

MsgBox TestVal

End Sub

Sub Test2(ByVal TestVal)

TestVal = TestVal +1

End Sub

285

163646-X Ch15.F 10/16/01 2:40 PM Page 285

⁄ In the Project window,
click to highlight a workbook
you open frequently.

� You must open this
workbook to activate the
event code.

¤ Click Insert ➪ Class
Module.

� Excel creates a blank class
module.

‹ Type a name for the code
module in the (Name) field of
the Properties window.

› Type Public WithEvents
AppEvent As Application,
replacing AppEvent with
the name of the application
event object.

You can use the NewWorkbook application event to
create a procedure that executes whenever Excel opens
a new workbook. When you use an application event,

you capture the events that the application — in this case,
Excel — creates. The NewWorkbook event triggers whenever
Excel creates a new workbook. Because the event comes
from the application and not an individual object such as a
workbook, or chart, you may find the process a little more
complex than capturing other object events.

When working with application events, you first create a
class module. Excel only makes code within a code module
available to other modules within the same project or
workbook. Because you create a procedure dealing with an
application event, you want all open projects to access the
code; therefore, you need to use a class module.

Because you must activate the event-handling code for an
application object, you need to place the code module you
create in a commonly used workbook. Because Excel does
not recognize your application event code until the
workbook containing the code opens, consider adding the
code to the Personal.xls workbook. Because that
workbook opens whenever you run Excel, the application
event code activates as the workbook opens. See Chapter 1
for more information about the Personal Macro workbook.

Within the class module you define an event custom object
using the WithEvents keyword. The WithEvents
keyword instructs Excel to notify you whenever the
Application object triggers a NewWorkbook event. You
use the Public statement because you want all open
projects to access this object variable. See Chapter 5 for
more information on using the Public keyword.

RUN A PROCEDURE WHEN
EXCEL CREATES A WORKBOOK

EXCEL PROGRAMMING

286

RUN A PROCEDURE WHEN EXCEL CREATES A WORKBOOK

163646-X Ch15.F 10/16/01 2:40 PM Page 286

� The class module name
changes to the name you
specify in step 3.

ˇ In the Object list, click
and then the option you
named in step 3.

� Excel creates a Private
AppEvent_NewWorkbook
subroutine where AppEvent
is the name of the application
object you created in step 4.

Á Type the VBA code to
execute when a new
workbook opens.

‡ In the Projects
window, double-click the
ThisWorkbook object for
the open workbook.

AppEvent

AUTOMATING PROCEDURES WITH EXCEL EVENTS 15
When you specify the public Application object using the
WithEvents keyword, the Visual Basic Editor creates a new object
and adds it to the Object drop-down list. When you select this
object, the Procedure box contains a list of all corresponding
application events. To create a new event procedure, you select the
object from the Object drop-down list and the appropriate event
from the Procedure drop-down list. When you do this, the Visual
Basic Editor creates the new subroutine with the appropriate
arguments. For example, if your object is AppEvent and you select
the WindowActivate event, the Editor adds the following code to
the class module:

Example:
Private Sub AppEvent_WindowActivate(ByVal Wb As Workbook, ByVal
Wn As Window)

End Sub

You can use the Object Browser to find out more about a particular
event by pressing F2. Type the event you want to know about and
click the Search icon (). The Object Browser displays a list of the
matching items. Excel indicates the Events with a small lightning bolt
icon (). If you click an event, the event syntax displays at the
bottom of the Object Browser window.

287

CONTINUED

163646-X Ch15.F 10/16/01 2:40 PM Page 287

� The code module opens
for the ThisWorkbook
object.

° Type Dim Test As New
AppEvent at the top of the
code module, replacing Test
with the local object created in
step 4 and AppEvent with the
object module created in step 3.

· In the Workbook_Open
subroutine, type Set
Test.AppEvent =
Excel.Application, replacing
Test with the variable in
step 7 and AppEvent with
the variable created in step 3.

Note: If the Workbook_Open
subroutine does not exist, see
the section “Run a Procedure as a
Workbook Opens” for information
on creating one.

‚ Close and reopen Excel.

You use the NewWorkbook event to determine
when Excel has created a new workbook. The
NewWorkbook event has one parameter value that

passes into the subroutine. The Wb parameter contains the
new created workbook. You can access any of the methods
and properties of the new workbook to customize the
created workbook. For example, you can use the Name
property to return the name of the new workbook. See
Chapter 9 for more information on working with the
Workbook object.

Creating the NewWorkbook subroutine in the class module
simply defines the code to run for the event, but does not
activate the code. To activate the subroutine, add code to a
Workbook_Open procedure that activates the
Application event procedure. Because the

Application event code is meant to work with all events
generated by the application, you want to add the class
module and the activation code to a workbook you open
frequently, such as the Personal Macro workbook.

To activate the class module code, the module containing
the activation procedure must contain a Dim statement,
which declares an object of the type defined in the class
module. You must place the Dim statement at the top of
the code module. For example, Dim NewAppEvent As
New AppEvent creates a new object variable of the type
created in the class module. Within a procedure, you add a
Set statement which actually activates the event. To make
the Set statement execute automatically, you place the Set
statement within the Workbook_Open procedure.

RUN A PROCEDURE WHEN
EXCEL CREATES A WORKBOOK

EXCEL PROGRAMMING

288

RUN A PROCEDURE WHEN EXCEL CREATES A WORKBOOK (CONTINUED)

163646-X Ch15.F 10/16/01 2:40 PM Page 288

— Open the workbook
containing the Workbook_Open
subroutine referenced in step 8.

± Click New. � The event-handling
procedure executes the
specified VBA code as a
new workbook is opened.

AUTOMATING PROCEDURES WITH EXCEL EVENTS 15
When you open the workbook containing the
code that activates the application event, the
code continues to execute each time you trigger
the event. You may find circumstances where you
need to deactivate an event so that it no longer
triggers. To do so, you can create a separate
subroutine that you can call from within Excel at
any point to cancel an event. Essentially, you set
the property of the application object to
Nothing, as shown in the code:

289

TYPE THIS:

Sub CancelEvent()

Set OpenAppEvent.AppEvent = Nothing

End Sub

RESULT:

The code cancels the event for the current
session of Excel. The next time you execute
Excel, the event is activated again.

TYPE THIS:

Sub CancelEvents()

Applcation.EnableEvents = False

End Sub

RESULT:

This code disables all event-handling
procedures for the current session of Excel.
The next time you execute Excel, the event-
handling procedures are reactivated.

Keep in mind that you must use the same
object and property references that you used
to create the application object. It is a good
idea to create this type of subroutine to
enable you to disable an event-handling
procedure at any time. Another method you
can use is to set the EnableEvents property
to false for the Application object, as
shown in this code:

163646-X Ch15.F 10/16/01 2:40 PM Page 289

⁄ In the Projects window,
locate the worksheet where
you want to add the
Worksheet_Change
subroutine.

¤ Double-click the sheet
object code that corresponds
to the appropriate worksheet.

� The code module opens
for the selected sheet object.

‹ In the Object box, click
 and then the Worksheet
option.

› In the Procedure box,
click and then the Change
option.

Sheet1 (Sheet1)

Change

You can create a procedure that watches a particular
cell or ranges of cells until a change occurs. To
monitor a range of cells you capture the Change

event that triggers for the Worksheet object. Excel triggers
this event when the user or an external link changes the
values within the selected worksheet. When Excel triggers
the event, it sends your event-handling function a Range
object containing the cells that changed. You design your
procedure to check the range of cells and determine if they
are within the range of cells you are monitoring.

Because the event you monitor relates to an individual
worksheet, you place the event-handling procedure within
the object module code that corresponds to the
appropriate worksheet. For example, to monitor the
changes to Sheet1, you place the code in the code module
for Sheet1. To capture the Change event, you must name
the procedure you create Worksheet_Change.

The Change event has one parameter, Target, whose
value Excel passes when it triggers the Change event. The
Target parameter receives the range of cells that were
altered. This value passes to your procedure by value so
that you receive a copy of the range of cells.

Although the Worksheet_Change procedure resides in a
sheet object code module, it can access other procedures
within the same workbook. Therefore, you can create a
Worksheet_Change procedure that calls procedures
located in another module.

Keep in mind, Excel only triggers this event when cell values
change due to modifications made by the user or an
external link. It does not trigger if a formula or procedure
performs a calculation that changes the value, or if you add
an object.

MONITOR A RANGE OF CELLS FOR CHANGES

EXCEL PROGRAMMING

290

MONITOR A RANGE OF CELLS FOR CHANGES

163646-X Ch15.F 10/16/01 2:40 PM Page 290

� The Visual Basic
Editor creates a new
Private subroutine named
Worksheet_Change.

ˇ Type the VBA code to run
when the workbook opens.

Note: See Chapter 11 for information
on using the Intersect method
to compare ranges.

Á Switch to Excel and click
a cell.

� The Worksheet_Change
procedure executes the specified
VBA code to determine if the
selected cell is within the
specified range.

AUTOMATING PROCEDURES WITH EXCEL EVENTS 15

Because Excel only triggers the Change event when a user or
external link changes the values of cells, you may find instances
where you expect Excel to trigger a change event, and it does not.
The following table compares incidents where Excel triggers a
Change event versus times it does not.

291

TRIGGER CHANGE EVENT DOES NOT TRIGGER CHANGE EVENT

Type value in a cell Calculate new value for formula

Edit ➪ Clear Formats Change cell formatting

Edit ➪ Fill Data ➪ Form

Press Delete Data ➪ Sort

Edit ➪ Delete Change from a procedure (macro)

Tools ➪ Spelling Insert ➪ Comment

Edit ➪ Replace Insert ➪ Picture

Insert ➪ Diagram

You can use the Calculate
event to determine when
cell values change due to
recalculating a worksheet.
You create an event-
handling procedure for this
event in the same fashion as
the Change event. The only
real difference is that the
Calculate event does not
have any parameter values.
The following code shows
how to initiate a
Calculate procedure:

Example:
Private Sub
Worksheet_Calculate()

End Sub

163646-X Ch15.F 10/16/01 2:40 PM Page 291

⁄ In the Projects
window, double-click the
ThisWorkbook object.

� The code module opens
for the ThisWorkbook
object.

¤ In the Workbook_Open
procedure, type
Application.OnTime Now +
Timevalue(“00:01:00”),
“ShowWelcome”, replacing
Now + TimeValue
(“000:01:00”) with a
valid time expression and
“ShowWelcome” with the
procedure to run.

Note: See the section “Run
a Procedure as a Workbook
Opens” for information on the
Workbook_Open procedure.

ThisWorkbook

You can create a procedure that executes at a specific
time by capturing the OnTime event. For example,
you can set a reminder message that pops up at a

specific time while editing a workbook.

Unlike most other events, the OnTime event is not
associated with a specific object. You, therefore, must
access this event using the OnTime method that is
associated with the Application object.

There are four different parameters you use with the
OnTime method, with only the first two being required:
EarliestTime, Procedure, LatestTime, and
Schedule. You use the EarliestTime parameter to
specify the time when the procedure executes. You express
the time using the Excel time-numbering system. You must
use the Procedure parameter to indicate the name of the
procedure to execute at the specified time. Remember to
enclose the procedure name in quotes.

Use the optional LatestTime parameter to indicate the
latest time when the procedure can run. If the procedure
has not run by the time specified by this parameter, it does
not run. The other optional parameter, Schedule, has a
default value of True to schedule the OnTime procedure to
run again at the specified time or False to clear a
previously set procedure.

Because the OnTime event is not associated with a specific
object, you can place your procedure containing the
method for accessing the event in any code module. Of
course, if you must place the OnTime method procedure in
a standard code window, you need to run the
corresponding macro before the OnTime event code
activates. You can also consider placing the OnTime method
within the Workbook_Open procedure so that it loads the
event code as the workbook opens. See the section “Run a
Procedure as a Workbook Opens” for more information.

EXECUTE A PROCEDURE AT A SPECIFIC TIME

EXCEL PROGRAMMING

292

EXECUTE A PROCEDURE AT A SPECIFIC TIME

163646-X Ch15.F 10/16/01 2:40 PM Page 292

‹ Create a new subroutine
with the same name as the
procedure specified in step 2.

Note: See Chapter 3 for information
on creating subroutines.

› Type the VBA code to run
when the subroutine
executes.

ˇ Close Excel.

Á Open the workbook in
Excel.

� The Workbook_Open
subroutine activates the OnTime
method and the specified
procedure executes at the
appropriate time.

AUTOMATING PROCEDURES WITH EXCEL EVENTS 15

The EarliestTime and LatestTime parameters
expect time values based on Excel’s time numbering
system, which stores all times as decimal values
ranging from 0.0 to 0.99999999. For example, Excel
stores 12:00 noon as 0.5 and 6:00 PM as 0.75.
Because dealing with fractional times becomes a
little mind-boggling, VBA provides the TimeValue
function, which you can use to convert a standard
time into the decimal equivalent required by the
two parameters. To use this function, you simply
place the time you want to convert within quotes.
For example, TimeValue(“5:45 PM”) converts
5:45 PM to the appropriate decimal value.

You can use any valid time string with the
TimeValue function.

Another useful VBA time function is the Now
function, which returns the current date and
time. When you use the Now function in
combination with a TimeValue function, you
can specify a time within a specific amount of
time from the current time. For example, to have
an event take place in 30 minutes, you express
the time as follows:

Example:
Now + TimeValue(“00:30:00”)

Notice that you use the addition sign (+) to join
the numeric values returned by the two
functions.

293

163646-X Ch15.F 10/16/01 2:40 PM Page 293

⁄ In the Projects
window, double-click the
ThisWorkbook object code.

� The code module opens
for the ThisWorkbook
object.

¤ In the Workbook_Open
procedure, type
Application.OnKey “^s“,
“CustomSave”, replacing
“^s” with a valid key
combination string and
“CustomSave” with the
procedure to run.

Note: See the section “Run
a Procedure as a Workbook
Opens” for information on the
Workbook_Open procedure.

ThisWorkbook

You can create a procedure that executes when you
press a specific key or combination of keys. For
example, you can change the built key combination of

Ctrl+S for saving a workbook to display your own custom
pop-up dialog box. To do this, you capture the OnKey
event. If you specify a key combination that Excel already
uses, your new definition overrides the Excel combination.

Unlike most other events, the OnKey event is not associated
with a specific object. For this reason, you access this event
you using the OnKey method that is associated with the
Application object.

The OnKey method has two different parameters. You use
the Key parameter to specify the key combination, which
you express as a string consisting of the combined keys you
capture. You represent standard keys, such as a and 5,

by simply typing the character for the key. You specify non-
standard keys, such as Delete and Insert, by placing the key
name in brackets, such as {DELETE} or {INSERT}.

You must use the Procedure parameter to indicate the
name of the procedure to execute at the specified time.
Remember to enclose the procedure name in quotes.

Because the OnKey event is not associated with a specific
object, you can place your procedure containing the
method for accessing the event in any code module. Keep
in mind that if you place the OnKey method procedure in a
standard code window, you need to run the corresponding
macro before the OnKey event code activates. You can
place the OnKey method within the Workbook_Open
procedure so that it loads as the workbook opens. See a
section “Run a Procedure as a Workbook Opens” for more
information.

EXECUTE A PROCEDURE
WHEN YOU PRESS KEYS

EXCEL PROGRAMMING

294

EXECUTE A PROCEDURE WHEN YOU PRESS KEYS

163646-X Ch15.F 10/16/01 2:40 PM Page 294

‹ Create a new subroutine
with the same name as the
procedure specified in step 2.

Note: See Chapter 3 for information
on creating subroutines.

› Type the VBA code to run
when the subroutine
executes.

ˇ Close Excel.

Á Open the workbook in
Excel.

‡ Press the custom key
combination.

� The Workbook_Open
subroutine activates the OnKey
method and the specified
procedure executes when you
press the key combination.

AUTOMATING PROCEDURES WITH EXCEL EVENTS 15
When specifying keys that do not display a character,
such as Delete or Down Arrow, you stipulate the name
of the key within braces, such as {Delete} or {Down}.
For some specific keys, Excel provides special characters
to represent the key when you combine them with
other characters:

295

CHARACTER REPRESENTS

+ SHIFT

^ CTRL

% ALT

~ ENTER

TYPE THIS:

Application.OnKey “{%}”, “ExecutePercent”

RESULT:

Whenever the % key is pressed on the
keyboard the ExecutePercent
procedure executes.

To use one of these special characters in
your key combination, enclose the
character in braces. For example, to
specify a procedure to execute when you
press the precent sign you type the
following code.

TYPE THIS:
Application.OnKey “+^{LEFT}”

RESULT:

The custom key combination
assignment is removed and
Excel executes the default
command for that key
combination, if one exists.

If you want to
assign a
particular key
combination
back to its
original meaning
in Excel, you
omit the
Procedure
parameter:

163646-X Ch15.F 10/16/01 2:40 PM Page 295

⁄ In the Projects window,
double-click the chart object
node for the chart where
you want to place the
Chart_BeforeRightClick
subroutine.

� The code module opens
for the chart object.

¤ In the Object box, click
 and then the Chart option.

‹ In the Procedure box,
click and then the
BeforeRightClick
option.

Chart1 (Chart1)

BeforeRightClick

You can create a procedure that runs automatically
each time a user right-clicks on a particular chart with
the mouse. To create this type of procedure, you need

to capture the BeforeRightClick event associated with
the appropriate Chart object.

To create a procedure that executes when a user right-clicks
a chart, you create a new procedure and add it to the
object code module for the particular chart. In fact, all
event-handling procedures that you create for monitoring
chart events must reside within the appropriate chart object
code module to have Excel execute them automatically. To
create a procedure that executes when right-clicking a
chart, you name the procedure Chart_BeforeRightClick.

Although the procedure resides in a chart object
code module, it can access other procedures within
the same workbook. Therefore, you can create a

Chart_BeforeRightClick procedure that calls
procedures located in another module. The procedures you
create only execute for the chart in whose code module
you place them. If you want to have the procedure execute
for multiple charts, you copy the procedure to each
module.

The BeforeRightClick event has one parameter,
Cancel, that passes to the event when it triggers. If the
Cancel parameter has the default value of False, the
right-click event procedure performs after your procedure
executes. If you set the value of the Cancel parameter to
True, Excel does not perform the default procedure.

Keep in mind, Excel does not perform the
BeforeRightClick event if the mouse pointer is
over a shape, a toolbar, or a menu bar. See Chapter 14
for more information about working with charts.

RUN A PROCEDURE WHEN
RIGHT-CLICKING A CHART

EXCEL PROGRAMMING

296

RUN A PROCEDURE WHEN RIGHT-CLICKING A CHART

163646-X Ch15.F 10/16/01 2:40 PM Page 296

� The Visual Basic
Editor creates a new
Private subroutine named
Chart_BeforeRightClick.

› Type the VBA code to
run when the user right-
clicks the chart.

ˇ Switch to Excel.

Á Right-click the
chart.

� The Chart_BeforeRightClick
procedure executes the specified VBA
code.

AUTOMATING PROCEDURES WITH EXCEL EVENTS 15
Instead of capturing a right-mouse click on the entire chart, you
may want to capture a double-click on an individual chart
element. For example, you can execute a procedure when the
user double-clicks the Chart Area by typing the following code:

297

TYPE THIS:

Private Sub Chart_BeforeDoubleClick(ByVal ElementID As Long, ByVal Arg1 As Long, ByVal
Arg2 As Long, Cancel As Boolean)

If ElementID = xlChartArea Then
Call ShowChartData

End If
End Sub

RESULT:

This code checks the value of the ElementID parameter to determine what element of the chart was
selected.

You can use the following constants to represent the chart element you want to capture.

xlAxis, xlAxisTitle, xlChartArea, xlChartTitle, xlCorners, xlDataLabel,
xlDisplayUnitLabel, xlDownBars, xlDropLines, xlErrorBars, xlFloor, xlHiLoLines,
xlLegend, xlLegendEntry, xlMajorGridlines, xlMinorGridlines, xlNothing,
xlPivotChartDropZone, xlPivotChartFieldButton, xlPlotArea, xlRadarAxisLabels,
xlSeries, xlSeriesLines, xlShape, xlTrendline, xlUpBars, xlWalls

163646-X Ch15.F 10/16/01 2:40 PM Page 297

VBA AND EXCEL OBJECT MODEL
QUICK REFERENCE

APPENDIX

VBA STATEMENTS QUICK REFERENCE
Legend:

Plain courier text = required

Italics = user-defined

[] = optional

. . . = list of items

| = or

File and Folder Handling

STATEMENT DESCRIPTION

ChDir path Changes to the specified folder location.

ChDrive drive Changes to the specified drive.

Close [filenumber] Closes a file opened using the Open statement.

FileCopy source, destination Copies a file from the source to the specified destination.

Kill pathname Deletes files from a disk. Use wildcards * for multiple characters and ? for
single characters.

Lock [#]filenumber[, recordrange] Locks all or a portion of an open file to prevent access by other processes.

Open pathname For mode Opens the specified file to allow input/output operations.
[Access access] [lock] As
[#]filenumber [Len=reclength]

MkDir path Creates a new directory or folder.

Print #filenumber[, outputlist] Writes display-formatted data sequentially to a file.

Put [#]filenumber, [recnumber,] varname Writes data contained in a variable to a disk file.

Reset Closes all files opened using the Open statement.

RmDir path Removes the specified folder.

SetAttr pathname, attributes Sets the attribute information for the specified file.

Unlock [#]filenumber[, recordrange] Unlocks a file to allow access by other processes.

Width #filenumber, width Assigns the output line width for a file opened using the Open statement.

Write #filenumber[, outputlist] Writes data to a sequential text file.

Interaction

STATEMENT DESCRIPTION

AppActivate title[, wait] Activates an application window.

DeleteSetting appname, section[, key] Deletes a section or key setting from an application’s entry in
the Windows Registry.

SaveSetting appname, section, key, setting Saves an application entry in the application’s entry in the
Windows Registry.

SendKeys string[, wait] Sends one or more keystrokes to the active window as if they
were typed on the keyboard.

298

173646-X AppA.F 10/16/01 2:40 PM Page 298

VBA QUICK REFERENCE A
VBA STATEMENTS QUICK REFERENCE (CONTINUED)

Program Flow

STATEMENT DESCRIPTION

[Public | Private] Declare Sub name Lib “libname” Declares a reference to an external DLL library
[Alias “aliasname”] [([arglist])] function.

Do [{While | Until} condition] Repeats a block of statements while or until a
[statements] condition is true. The condition is checked at the
Loop beginning of the loop.

Do Repeats a block of statements while or until a
[statements] condition is true. Because the condition is
Loop [{While | Until} condition] checked at the end of the loop, the block of

statements always executes at least once.

Exit Do | For | Function | Property | Sub Exits the specified Do Loop, For Next,
Function, Sub, or Property code.

For Each element In group Repeats a block of statements for each element
[statements] in an array or collection.
Next [element]

For counter = start To end [Step step] Repeats a section of code the specified number
[statements] of times.

Next [counter]

[Public | Private | Friend] [Static] Function name Defines a procedure that returns a value.
[(arglist)] [As type]
[statements]
[name = expression]
End Function

If condition Then Conditionally executes a block of statements
[statements] based upon the value of an expression.

[ElseIf condition-n Then
[elseifstatements] . . .

[Else
[elsestatements]]

End If

[Public | Private | Friend] [Static] Property Get name Declares the name and arguments procedure
[(arglist)] [As type]

[statements]
[name = expression]
End Property

[Public | Private | Friend] [Static] Property Let name Declares the name and arguments of a
([arglist,] value) procedure that assigns a value to a property.

[statements]
End Property

[Public | Private | Friend] [Static] Property Set name Declares the name and arguments of a
([arglist,] reference) procedure that sets a reference to an object.

[statements]
End Property

299

173646-X AppA.F 10/16/01 2:40 PM Page 299

VBA AND EXCEL OBJECT MODEL
QUICK REFERENCE

APPENDIX

300

VBA STATEMENTS QUICK REFERENCE (CONTINUED)

Program Flow (Continued)

STATEMENT DESCRIPTION

Select Case testexpression Executes one block out of a series of statement
[Case expressionlist-n blocks depending upon the value of an expression.

[statements-n]] . . .
[Case Else
[elsestatements]]
End Select

[Private | Public | Friend] [Static] Sub name [(arglist)] Declares the name, arguments, and code that
[statements] form a Sub procedure.
End Sub

While condition Executes a block of statements as long as the
[statements] specified condition is true.
Wend

With object Executes a block of statements on a single object
[statements] or on a user-defined data type.
End With

Variable Declaration

STATEMENT DESCRIPTION

[Public | Private] Const constname [As type] = expression Declares a constant value.

Dim [WithEvents] varname[([subscripts])] [As [New] type] Declares variables and allocates the appropriate
storage space.

Friend [WithEvents] varname[([subscripts])] [As [New] type] Declares a procedure or variable to only have
scope in the project where it is defined.

Option Compare {Binary | Text | Database} Specifies the default comparison method to use
when comparing strings.

Option Explicit Forces declaration of all variables within the
module.

Option Private Indicates that all code within the entire module is
Private. This option is used by default. You can
overwrite the effects of this option by declaring a
specific procedure Public.

Private [WithEvents] varname[([subscripts])] [As [New] type] Declares variables and procedures to only have
scope within the current module.

Public [WithEvents] varname[([subscripts])] [As [New] type] Declares variables and procedures to have scope
within the entire project.

173646-X AppA.F 10/16/01 2:40 PM Page 300

VBA QUICK REFERENCE A

301

VBA STATEMENTS QUICK REFERENCE (CONTINUED)

Variable Declaration (Continued)

STATEMENT DESCRIPTION

ReDim [Preserve] varname(subscripts) [As type] Changes the dimensions of a dynamic array.

[Private | Public] Type varname Defines a custom data type.
elementname [([subscripts])] As type
[elementname [([subscripts])] As type]
. . .

End Type

VBA FUNCTION QUICK REFERENCE
Legend:

Plain courier text = required

Italics = user-defined

[] = optional

. . . = list of items

| = or

Array Functions

FUNCTION DESCRIPTION RETURNS

Array(arg1,arg2, arg3, . . .) Creates a variant array containing the specified elements. Variant

LBound(arrayname[, dimension]) Returns the smallest subscript for the specified array. Long

UBound(arrayname[, dimension]) Returns the largest subscript for the specified array. Long

Data Type Conversion Functions

FUNCTION DESCRIPTION RETURNS

Asc(string) Returns the character code of the first letter in a string. Integer

CBool(expression) Converts an expression to Boolean data type Boolean
(True or False).

CByte(expression) Converts an expression to Byte data type. Byte

CCur(expression) Converts an expression to Currency data type. Currency

CDate(expression) Converts an expression to a Date data type. Date

CDbl(expression) Converts an expression to Double data type. Double

CDec(expression) Converts an expression to a decimal value. Variant
(Decimal)

Chr(charactercode) Converts the character code to the corresponding character. Variant
Chr(9) returns a tab, Chr(34) returns quotation marks, etc.

CInt(expression) Converts an expression to an Integer data type; rounding Integer
any fractional parts.

173646-X AppA.F 10/16/01 2:40 PM Page 301

VBA AND EXCEL OBJECT MODEL
QUICK REFERENCE

APPENDIX

302

VBA FUNCTION QUICK REFERENCE (CONTINUED)

Data Type Conversion Functions (Continued)

FUNCTION DESCRIPTION RETURNS

CLng(expression) Converts an expression to the Long data type. Long

CSng(expression) Converts an expression to the Single data type. Single

CStr(expression) Returns a string containing the specified expression. String

CVar(expression) Converts any data type to a Variant data type. All Variant
numeric values are treated as Double data types and
string expressions are treated as String data types.

Format(expression[, format[, Formats the expression using either predefined or Variant
firstdayofweek[, user-defined formats.
firstweekofyear]]])

FormatCurrency(Expression[, Formats the expression as a currency value using the Currency
NumDigitsAfterDecimal system-defined currency symbol.
[, IncludeLeadingDigit
[,UseParensForNegativeNumbers
[, GroupDigits]]]])

FormatDateTime(Date[, NamedFormat]) Formats an expression as a date and time. Date

FormatNumber (Expression Formats the expression as a number. Mixed
[, NumDigitsAfterDecimal
[, IncludeLeadingDigit
[, UseParensForNegativeNumbers
[, GroupDigits]]]])

FormatPercent (Expression Returns the expression formatted as a percentage with a String
[,NumDigitsAfterDecimal trailing % character.
[,IncludeLeadingDigit
[,UseParensForNegativeNumbers
[,GroupDigits]]]])

Hex(number) Converts a number to a hexadecimal value. Rounds String
numbers to nearest whole number before converting.

Oct(number) Converts a number to an octal value. Rounds numbers to Variant
nearest whole number before converting. (String)

Str(number) Converts a number to a string using the Variant . Variant
data type (String)

Val(string) Returns the numeric portion of a string formatted as a Mixed
number of the appropriate data type.

173646-X AppA.F 10/16/01 2:40 PM Page 302

VBA QUICK REFERENCE A

303

VBA FUNCTION QUICK REFERENCE (CONTINUED)

Date and Time Functions

FUNCTION DESCRIPTION RETURNS

Date Returns the current system date. Date

DateAdd(interval, number, date) Returns a date that is the specified interval of time from Date
the original date.

DateDiff(interval, date1, date2[, Determines the time interval between two dates. Long
firstdayofweek[,
firstweekofyear]])

DatePart(interval, date[, Returns the specified part of a date. Integer
firstdayofweek[,
firstweekofyear]])

DateSerial(year, month, day) Converts the specified date to a serial number. Date

DateValue(date) Converts a string to a date. Date

Day(date) Returns a whole number between 1 and 31 representing Integer
the day of the month.

Hour(time) Returns a whole number between 0 and 23 representing Integer
the hour of the day.

Minute(time) Returns a whole number between 0 and 59 representing Integer
the minute of the hour.

Month(date) Returns a whole number between 1 and 12 representing Integer
the month of the year.

Now Returns the current system date and time. Date

Second(time) Returns a whole number between 0 and 59 representing Integer
the second of the minute.

Time Returns the current system time. Date

Timer Indicates the number of seconds that have elapsed since Single
midnight

TimeSerial(hour, minute, second) Creates a time using the specified hour, minute, Date
and second values.

TimeValue(time) Converts a time to the serial number used to store time. Date

WeekDay(date, [firstdayofweek]) Returns a whole number representing the first day Integer
of the week.

Year(date) Returns a whole number representing the year portion Integer
of a date.

173646-X AppA.F 10/16/01 2:40 PM Page 303

VBA AND EXCEL OBJECT MODEL
QUICK REFERENCE

APPENDIX

304

File and Folder Handling Functions

FUNCTION DESCRIPTION RETURNS

CurDir(drive) Returns the current path. String

Dir[(pathname[, attributes])] Returns the name of the file, directory, or folder that String
matches the specified pattern.

EOF(filenumber) Returns -1 when the end of a file has been reached. Integer

FileAttr(filenumber, returntype) Indicates the file mode used for files opened with the Long
Open statement.

FileDateTime(pathname) Indicates the date and time when a file was last modified. Date

FileLen(pathname) Indicates the length of a file in bytes. Long

FreeFile(rangenumber) Returns the next file number available for use by the Integer
Open statement.

GetAttr(pathname) Returns a whole number representing the attributes Integer
of a file, directory, or folder.

Input (number, [#]filenumber) Returns a string containing the indicated number of String
characters from the specified file.

Loc(filenumber) Indicates the current read/write position in an open file. Long

LOF(filenumber) Returns the size in bytes of a file opened using the Long
Open statement.

Seek(filenumber) Specifies the current read/write position with a file Long
opened with the Open statement.

Financial Functions

FUNCTION DESCRIPTION RETURNS

DDB(cost, salvage, life, period[, factor]) Specifies the depreciation value for an Double
asset during a specific time frame.

FV(rate, nper, pmt[, pv[, type]]) Determines the future value of an annuity Double
based on periodic fixed payments.

IPmt(rate, per, nper, pv[, fv[, type]]) Determines the interest payment on an Double
annuity for a specific period of time.

IRR(values(), [, guess]) Determines the internal rate of returns for Double
a series of cash flows.

MIRR(values(), finance_rate, reinvest_rate) Returns the modified interest rate of Double
returns for a series of periodic cash flows.

VBA FUNCTION QUICK REFERENCE (CONTINUED)

173646-X AppA.F 10/16/01 2:40 PM Page 304

VBA QUICK REFERENCE A

305

Financial Functions (Continued)

FUNCTION DESCRIPTION RETURNS

NPer(rate, pmt, pv[, fv[, type]]) Returns the number of periods for Double
an annuity.

NPV(rate, values()) Returns the net present value of Double
an investment.

Pmt(rate, nper, pv[, fv[, type]]) Returns the payment amount for Double
an annuity based on fixed payments.

PPmt(rate, per, nper, pv[, fv[, type]]) Returns the principal payment amount Double
for an annuity.

PV(rate, nper, pmt[, fv[, type]]) Returns the present value of an annuity. Double

Rate(nper, pmt, pv[, fv[, type[, guess]]]) Returns the interest rate per period for Double
an annuity.

SLN(cost, salvage, life) Determines the straight-line depreciation Double
of an asset for a single period.

SYD(cost, salvage, life, period) Determines the sum-of-years’ digits Double
depreciation of an asset for a
specified period.

Information Functions

FUNCTION DESCRIPTION RETURNS

CVErr(errornumber) Returns a user-defined error number. Variant

Error[(errornumber)] Returns the error message for the specified error number. String

IsArray(varname) Indicates whether a variable contains an array. Boolean

IsDate(expression) Indicates whether an expression contains a date. Boolean

IsEmpty(expression) Indicates whether a variable has been initialized. Boolean

IsError(expression) Indicates whether an expression is an error value. Boolean

IsMissing(argname) Indicates whether an optional argument was passed to Boolean
a procedure.

IsNull(expression) Indicates whether an expression contains no valid data. Boolean

IsNumeric(expression) Indicates whether an expression is a number. Boolean

IsObject(identifier) Indicates whether a variable references an object. Boolean

TypeName(varname) Specifies the variable type. String

VarType(varname) Specifies the subtype of a variable. Integer

VBA FUNCTION QUICK REFERENCE (CONTINUED)

173646-X AppA.F 10/16/01 2:40 PM Page 305

VBA AND EXCEL OBJECT MODEL
QUICK REFERENCE

APPENDIX

306

Interaction Functions

FUNCTION DESCRIPTION RETURNS

Choose(index, choice-1, Selects and returns a value from a list of arguments. Mixed
[choice-2, ...])

DoEvents() Yields execution so the operating system can process Integer
other events.

Iif(expr, truepart, falsepart) Evaluates the expression and returns either the Mixed
truepart or falsepart parameter value.

InputBox(prompt[, title] Displays a dialog box prompting the user for input. String
[, default] [, xpos]
[, ypos] [, helpfile,
context])

GetAllSettings(appname, section) Returns a list of key settings and their values from the Variant
Windows Registry.

GetObject([pathname][, class]) Returns a reference to an object provided by an Variant
ActiveX Component.

GetSetting(appname, section, Returns a key setting value from an application’s entry Variant
key[, default]) in the Windows registry.

MsgBox(prompt[, buttons] Displays a message box and returns a value representing Integer
[, title] [, helpfile, the button pressed by the user.
context])

Partition(number, start, stop, Indicates where a number occurs within a series of ranges. String
interval)

QBColor(color) Returns the RGB color code for the specified color. Long

Switch(expr-1, value-1[, expr-2, Evaluates a list of expressions and returns a value Variant
value-2 ...]) associated with the first True expression.

RGB(red, green, blue) Returns a number representing the RGB color value. Long

Mathematical Functions

FUNCTION DESCRIPTION RETURNS

Abs(number) Returns the absolute value of a number. Mixed

Atn(number) Returns the arctangent of a number. Double

Cos(number) Returns the cosine of an angle. Double

VBA FUNCTION QUICK REFERENCE (CONTINUED)

173646-X AppA.F 10/16/01 2:40 PM Page 306

VBA QUICK REFERENCE A

307

Mathematical Functions (Continued)

FUNCTION DESCRIPTION RETURNS

Exp(number) Returns the base of the natural logarithms raised to Double
a power.

Fix(number) Returns the integer portion of a number. With negative Integer
values, returns first negative value greater than or
equal to number.

Int(number) Returns the integer portion of a number. With negative Integer
values, returns the first negative number less than or
equal to the number.

Log(number) Returns the natural logarithm of a number. Double

Round(expression [, numdecimalplaces]) Rounds a number to the specified number of Mixed
decimal places.

Rnd[(number)] Returns a random number between 0 and 1. Single

Sgn(number) Returns 1 for a number greater than 0, 0 for a value of 0, Integer
and -1 number less than zero.

Sin(number) Specifies the sine of an angle. Double

Sqr(number) Specifies the square root of a number. Double

Tan(number) Specifies the tangent of an angle. Double

String Manipulation Functions

FUNCTION DESCRIPTION RETURNS

nStr([start,]string1, Specifies the position of one string within another string. Long
string2[, compare])

InStrRev(stringcheck, Specifies the position of one string within another Long
stringmatch[, start[, starting at the end of the string.
compare]])

LCase(string) Converts a string to lowercase. String

Left(string, length) Returns the specified number of characters from the String
left side of a string.

Len(string | varname) Determines the number of characters in a string. Long

LTrim(string) Trims spaces from the left side of a string. String

Mid(string, start[, length]) Returns the specified number of characters from the String
center of a string.

Right(string, length) Returns the specified number of characters from the String
right side of a string.

RTrim(string) Trims spaces from the right side of a string. String

Space(number) Creates a string with the specified number of spaces. String

VBA FUNCTION QUICK REFERENCE (CONTINUED)

173646-X AppA.F 10/16/01 2:40 PM Page 307

VBA AND EXCEL OBJECT MODEL
QUICK REFERENCE

APPENDIX

308

String Manipulation Functions (Continued)

FUNCTION DESCRIPTION RETURNS

ISpc(n) Positions output when printing to a file. String

Str(number) Returns a string representation of a number. String

StrComp(string1, Returns a value indicating the result of a
string2[, compare]) string comparison. Integer

StrConv(string, conversion, LCID) Converts a string to the specified format. String

String(number, character) Creates a string by repeating a character String
the specified number of times.

Tab[(n)] Positions output when printing to a file. String

Trim(string) Trims spaces from left and right of a string. String

UCase(string) Converts a string to uppercase. String

VBA FUNCTION QUICK REFERENCE (CONTINUED)

vbMsgBoxStyle Constants (MsgBox Function)

CONSTANT VALUE DESCRIPTION

vbAbortRetryIgnore 2 Displays Abort, Retry, and Ignore buttons.

vbApplicationModal 0 Creates application modal message box.

vbCritical 16 Displays Critical Message icon.

vbDefaultButton1 0 Makes first button default.

vbDefaultButton2 256 Makes second button default.

vbDefaultButton3 512 Makes third button default.

vbDefaultButton4 768 Makes fourth button default.

vbExclamation 48 Displays Warning Message icon.

vbInformation 64 Displays Information Message icon.

vbMsgBoxHelpButton 16384 Adds a Help button.

VBA FUNCTION CONSTANTS AND CHARACTERS

173646-X AppA.F 10/16/01 2:40 PM Page 308

VBA QUICK REFERENCE A

309

vbMsgBoxStyle Constants (MsgBox Function) (Continued)

CONSTANT VALUE DESCRIPTION

vbMsgBoxRight 524288 Right aligns text in the box.

vbMsgBoxRtlReading 1048576 Used only with Hebrew and Arabic systems for
right-to-left reading.

vbMsgBoxSetForeground 65536 Makes message box the foreground window.

vbOKCancel 1 Displays OK and Cancel buttons.

vbOKOnly 0 Displays only the OK button.

vbQuestion 32 Displays Warning Query icon.

vbRetryCancel 5 Displays Retry and Cancel buttons.

vbSystemModal 4096 Creates a system modal message box.

vbYesNo 4 Displays Yes and No buttons.

vbYesNoCancel 3 Displays Yes, No, and Cancel buttons.

vbDayOfWeek Constants

CONSTANT VALUE DESCRIPTION

vbUseSystemDayofWeek 0 Uses the system defined first day of week

vbSunday 1 Sunday (default)

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

vbFirstWeekOfYear Constants

CONSTANT VALUE DESCRIPTION

vbUseSystem 0 Uses system defined first week of year.

vbFirstJan1 1 Starts with week in which January 1 occurs
(default).

vbFirstFourDays 2 Starts with the first week that has at least four
days in the new year.

vbFirstFullWeek 3 Starts with first full week of the year.

VBA FUNCTION CONSTANTS AND CHARACTERS

173646-X AppA.F 10/16/01 2:40 PM Page 309

VBA AND EXCEL OBJECT MODEL
QUICK REFERENCE

APPENDIX

310

Format Function Characters

DATE/TIME CHARACTERS DISPLAYS

d Day with no leading zero.

ddd Three-letter abbreviation of day (Sun. – Sat.).

dddd Full day name (Sunday).

ddddd Complete date using short date format.

dddddd Complete date using long date format.

w Day of week as number (1 for Sunday).

ww Week of year as number.

m Month with no leading zero.

mmm Three letter abbreviation of month (Jan.-Dec.).

mmmm Complete month name.

q Quarter of year.

y Day of year as number.

yy Year as 2-digit number.

yyyy Year as 4-digit number.

h Hour with no leading zero.

n Minutes with no leading zero.

s Seconds with no leading zero.

ttttt Complete time using system time format.

c Date as dddddd and time as ttttt.

Format Function Predefined Formats

FORMAT DESCRIPTION

General Date Uses general date format.

Long Date Uses system-defined long date, such as Tuesday, August 7, 2001.

Medium Date Uses the medium date format, such as 07-Aug-01.

Short Date Uses system-defined short date, such as 8/7/2001.

Long Time Uses system-defined long time, such as 5:45:30 P.M.

Medium Time Uses the medium time format, such as 05:45 P.M.

VBA FUNCTION CONSTANTS AND CHARACTERS

173646-X AppA.F 10/16/01 2:40 PM Page 310

VBA QUICK REFERENCE A

311

Format Function Predefined Formats (Continued)

FORMAT DESCRIPTION

Short Time Uses the short time format, such as 17:45.

General Number Uses the general number format.

Currency Places the appropriate currency symbol in front of the number.

Fixed Uses a fixed decimal format.

Standard Uses standard formatting.

Percent Converts the expression to a percentage.

Scientific Displays the expression using scientific notation.

Yes/No Converts the expression to a Yes or No value.

True/False Converts the expression to a True or False value.

On/Off Converts the expression to an On or Off value.

VBA FUNCTION CONSTANTS AND CHARACTERS

XlColumnDataType Constants

CONSTANT VALUE DESCRIPTION

xlDMYFormat 4 DMY format date

xlDYMFormat 7 DYM format date

xlEMDFormat 10 EMD format date

xlGeneralFormat 1 General format

xlMDYFormat 3 MDY format date

xlMYDFormat 6 MYD format date

xlSkipColumn 9 Skip Column

xlTextFormat 2 Text format

xlYDMFormat 8 YDM format date

xlYMDFormat 5 YMD format date

XlFileFormat Constants

CONSTANT VALUE DESCRIPTION

xlAddIn 18 Excel add-in.

xlCSV 6 Comma-separated values format.

xlCSVMac 22 Macintosh comma-separated values format.

EXCEL OBJECT MODEL CONSTANTS

173646-X AppA.F 10/16/01 2:40 PM Page 311

VBA AND EXCEL OBJECT MODEL
QUICK REFERENCE

APPENDIX

312

XlFileFormat Constants (Continued)

CONSTANT VALUE DESCRIPTION

xlCSVMSDOS 24 MSDOS comma-separated values format.

xlCSVWindows 23 MS Windows comma-separated values format.

xlCurrentPlatformText -4158 Text file based on current operating system.

xlDBF2 7 DBase II format.

xlDBF3 8 DBase III format.

xlDBF4 11 DBase IV format.

xlDIF 9 Data interchange format.

xlExcel2 16 Excel 2.0 format.

xlExcel2FarEast 27 Excel 2.0 format – Far East version.

xlExcel3 29 Excel 3.0 format.

xlExcel4 33 Excel 4.0 format.

xlExcel4Workbook 35 Excel 4.0 workbook format.

xlExcel5 39 Excel 5.0 format.

xlExcel7 39 Excel 97 format.

xlExcel9795 43 Excel 95 – 97 format.

xlHtml 44 HTML format.

xlIntlAddIn 26 Excel international Add-in.

xlIntlMacro 25 Excel international macro.

xlSYLK 2 Symbolic link format.

xlTemplate 17 Template file format.

xlTextMac 19 Macintosh text file format.

xlTextMSDOS 21 MSDOS text file format.

xlTextPrinter 36 Text file created for a printer (.prn).

xlTextWindows 20 MS Window text file format.

xlUnicodeText 42 Unicode text file format.

xlWebArchive 45 Web archive format (.mht).

xlWK1 5 Lotus 2.x format.

xlWK1ALL 31 Lotus 2.x .all format.

EXCEL OBJECT MODEL CONSTANTS (CONTINUED)

173646-X AppA.F 10/16/01 2:40 PM Page 312

VBA QUICK REFERENCE A

313

XlFileFormat Constants (Continued)

CONSTANT VALUE DESCRIPTION

xlWK1FMT 30 Lotus 2.x .fmt format.

xlWK3 15 Lotus 3.x format.

xlWK3FM3 32 Lotus 3.x and Lotus 1-2-3 for Windows format.

xlWK4 38 Lotus 4.0 format.

xlWKS 4 MS Works file format.

xlWorkbookNormal -4143 Excel workbook format.

xlWorks2FarEast 28 MS Works file – Far East format.

xlWQ1 34 Quattro Pro for MSDOS format.

xlXMLSpreadsheet 46 XML format.

MsoFileType Constants

CONSTANT VALUE DESCRIPTION

msoFileTypeAllFiles 1 All file types.

msoFileTypeBinders 6 Microsoft Office Binder file.

msoFileTypeCalendarItem 11 Microsoft Outlook Calendar item.

msoFileTypeContactItem 12 Microsoft Outlook Contact item.

msoFileTypeDatabases 7 Database files.

msoFileTypeDataConnectionFiles 17 Database connection files.

msoFileTypeDesignerFiles 22 Designer files.

msoFileTypeDocumentImagingFiles 20 Document imaging files.

msoFileTypeExcelWorkbooks 4 Microsoft Excel Workbooks.

msoFileTypeJournalItem 14 Journal items.

msoFileTypeMailItem 10 Microsoft Outlook Mail message.

msoFileTypeNoteItem 13 Microsoft Outlook Note item.

msoFileTypeOfficeFiles 2 All Microsoft Office file types.

msoFileTypeOutlookItems 9 Microsoft Outlook files.

msoFileTypePhotoDrawFiles 16 Microsoft PhotoDraw files.

msoFileTypePowerPointPresentations 5 Microsoft PowerPoint files.

msoFileTypeProjectFiles 19 Microsoft Project files.

msoFileTypePublisherFiles 18 Microsoft Publisher files.

msoFileTypeTaskItem 15 Microsoft Outlook Task item.

msoFileTypeTemplates 8 Template files.

EXCEL OBJECT MODEL CONSTANTS (CONTINUED)

173646-X AppA.F 10/16/01 2:40 PM Page 313

VBA AND EXCEL OBJECT MODEL
QUICK REFERENCE

APPENDIX

314

MsoFileType Constants (Continued)

CONSTANT VALUE DESCRIPTION

msoFileTypeVisioFiles 21 Visio files.

msoFileTypeWebPages 23 Web pages including .htm, .asp, and .mht files.

msoFileTypeWordDocuments 3 Microsoft Word documents.

XlChartType Constants

CONSTANT VALUE CHART TYPE

xl3DArea -4098 3D Area

xl3DAreaStacked 78 3D Stacked Area

xl3DAreaStacked100 79 100% Stacked Area

xl3DBarClustered 60 3D Clustered Bar

xl3DBarStacked 61 3D Stacked Bar

xl3DBarStacked100 62 3D 100% Stacked Bar

xl3DColumn -4100 3D Column

xl3DColumnClustered 54 3D Clustered Column

xl3DColumnStacked 55 3D Stacked Column

xl3DColumnStacked100 56 3D 100% Stacked Column

xl3DLine -4101 3D Line

xl3DPie -4102 3D Pie

xl3DPieExploded 70 Exploded 3D Pie

xlArea 1 Area

xlAreaStacked 76 Stacked Area

xlAreaStacked100 77 100% Stacked Area

xlBarClustered 57 Clustered Bar

xlBarOfPie 71 Bar of Pie

xlBarStacked 58 Stacked Bar

xlBarStacked100 59 100% Stacked Bar

xlBubble 15 Bubble

xlBubble3DEffec 87 Bubble with 3D effects

EXCEL OBJECT MODEL CONSTANTS (CONTINUED)

173646-X AppA.F 10/16/01 2:40 PM Page 314

VBA QUICK REFERENCE A

315

XlChartType Constants (Continued)

CONSTANT VALUE CHART TYPE

xlColumnClustered 51 Clustered Column

xlColumnStacked 52 Stacked Column

xlColumnStacked100 53 100% Stacked Column

xlConeBarClustered 102 Clustered Cone Bar

xlConeBarStacked 103 Stacked Cone Bar

xlConeBarStacked100 104 100% Stacked Cone Bar

xlConeCol 105 3D Cone Column

xlConeColClustered 99 Clustered Cone Column

xlConeColStacked 100 Stacked Cone Column

xlConeColStacked100 101 100% Stacked Cone Column

xlCylinderBarClustered 95 Clustered Cylinder Bar

xlCylinderBarStacked 96 Stacked Cylinder Bar

xlCylinderBarStacked100 97 100% Stacked Cylinder Bar

xlCylinderCol 98 3D Cylinder Column

xlCylinderColClustered 92 Clustered Cone Column

xlCylinderColStacked 93 Stacked Cone Column

xlCylinderColStacked100 94 100% Stacked Cylinder Column

xlDoughnut -4120 Doughnut

xlDoughnutExploded 80 Exploded Doughnut

xlLine 4 Line

xlLineMarkers 65 Line with Markers

xlLineMarkersStacked 66 Stacked Line with Markers

xlLineMarkersStacked100 67 100% Stacked Line with Markers

xlLineStacked 63 Stacked Line

xlLineStacked100 64 100% Stacked Line

xlPie 5 Pie

xlPieExploded 69 Exploded Pie

xlPieOfPie 68 Pie of Pie

xlPyramidBarClustered 109 Clustered Pyramid Bar

xlPyramidBarStacked 110 Stacked Pyramid Bar

xlPyramidBarStacked100 111 100% Stacked Pyramid Bar

xlPyramidCol 112 3D Pyramid Column

xlPyramidColClustered 106 Clustered Pyramid Column

EXCEL OBJECT MODEL CONSTANTS (CONTINUED)

173646-X AppA.F 10/16/01 2:40 PM Page 315

VBA AND EXCEL OBJECT MODEL
QUICK REFERENCE

APPENDIX

316

XlChartType Constants (Continued)

CONSTANT VALUE CHART TYPE

xlPyramidColStacked 107 Stacked Pyramid Column

xlPyramidColStacked100 108 100% Stacked Pyramid Column

xlRadar -4151 Radar

xlRadarFilled 82 Filled Radar

xlRadarMarkers 81 Radar with Data Markers

xlStockHLC 88 High-Low-Close

xlStockOHLC 89 Open-High-Low-Close

xlStockVHLC 90 Volume-High-Low-Close

xlStockVOHLC 91 Volume-Open-High-Low-Close

xlSurface 83 3D Surface

xlSurfaceTopView 85 Top View Surface

xlSurfaceTopViewWireframe 86 Top View wireframe Surface

xlSurfaceWireframe 84 3D Surface wireframe

xlXYScatter -4169 Scatter

xlXYScatterLines 74 Scatter with Lines.

xlXYScatterLinesNoMarkers 75 Scatter with Lines and No Data Markers

xlXYScatterSmooth 72 Scatter with Smoothed Lines

xlXYScatterSmoothNoMarkers 73 Scatter with Smoothed Lines and No Data Markers

XlLineStyle Constants

CONSTANT VALUE DESCRIPTION

xlContinuous 1 Continuous solid line.

xlDash -4155 Dashed line.

xlDashDot 4 Line with the pattern dash dot.

xlDashDotDot 5 Line with the pattern dash dot dot.

xlDot -4118 Dotted line.

xlDouble -4119 Double solid line.

xlSlantDashDot 13 Slanted line with the pattern dash dot.

xlineStyleNone -4142 No line.

EXCEL OBJECT MODEL CONSTANTS (CONTINUED)

173646-X AppA.F 10/16/01 2:40 PM Page 316

VBA QUICK REFERENCE A

317

XlBorderWeight Constants

CONSTANT VALUE DESCRIPTION

xlHairline 1 Creates a very thin line.

xlMedium -4138 Creates a medium width line.

xlThick 4 Creates a thick line.

xlThin 2 Creates a thin line.

XlPattern Constants

CONSTANT VALUE DESCRIPTION

xlPatternAutomatic -4105 System default.

xlPatternChecker 9 Checkered pattern.

xlPatternCrissCross 16 Criss-cross pattern.

xlPatternDown -4121 Downward pattern.

xlPatternGray16 17 16% gray pattern.

xlPatternGray25 -4124 25% gray pattern.

xlPatternGray50 -4125 50% gray pattern.

xlPatternGray75 -4126 75% gray pattern.

xlPatternGray8 18 8% gray pattern.

xlPatternGrid 15 Grid pattern.

xlPatternHorizontal -4128 Horizontal pattern.

xlPatternLightHorizontal 11 Light horizontal pattern.

xlPatternLightVertical 12 Light vertical pattern.

xlPatternLightDown 13 Light downward pattern.

xlPatternLightUp 14 Light upward pattern.

xlPatternNone -4142 No pattern.

xlPatternSemiGray75 10 75% semi-gray pattern.

xlPatternSolid 1 Solid color, no pattern.

xlPatternUp -4162 Upward pattern.

xlPatternVertical -4166 Vertical pattern.

EXCEL OBJECT MODEL CONSTANTS (CONTINUED)

173646-X AppA.F 10/16/01 2:40 PM Page 317

VBA AND EXCEL OBJECT MODEL
QUICK REFERENCE

APPENDIX

318

Excel CommandBars

CONSTANT NAME TYPE

1 Worksheet Menu Bar Menu Bar

2 Chart Menu Bar Menu Bar

3 Standard Toolbar

4 Formatting Toolbar

5 PivotTable Toolbar

6 Chart Toolbar

7 Reviewing Toolbar

8 Forms Toolbar

9 Stop Recording Toolbar

10 External Data Toolbar

11 Formula Auditing Toolbar

12 Full Screen Toolbar

13 Circular Reference Toolbar

14 Visual Basic Toolbar

15 Web Toolbar

16 Control Toolbox Toolbar

17 Exit Design Mode Toolbar

18 Refresh Toolbar

19 Watch Window Toolbar

20 PivotTable Field List Toolbar

21 Borders Toolbar

22 Protection Toolbar

23 Text To Speech Toolbar

24 Drawing Toolbar

25 Query and Pivot Shortcut Menu

26 PivotChart Menu Shortcut Menu

27 Workbook tabs Shortcut Menu

28 Cell Shortcut Menu

EXCEL BUILT-IN MENUS AND TOOLBARS

173646-X AppA.F 10/16/01 2:40 PM Page 318

VBA QUICK REFERENCE A

319

Excel CommandBars (Continued)

CONSTANT NAME TYPE

29 Column Shortcut Menu

30 Row Shortcut Menu

31 Cell Shortcut Menu

32 Column Shortcut Menu

33 Row Shortcut Menu

34 Ply Shortcut Menu

35 XLM Cell Shortcut Menu

36 Document Shortcut Menu

37 Desktop Shortcut Menu

38 Nondefault Drag and Drop Shortcut Menu

39 AutoFill Shortcut Menu

40 Button Shortcut Menu

41 Dialog Shortcut Menu

42 Series Shortcut Menu

43 Plot Area Shortcut Menu

44 Floor and Walls Shortcut Menu

45 Trendline Shortcut Menu

46 Chart Shortcut Menu

47 Format Data Series Shortcut Menu

48 Format Axis Shortcut Menu

49 Format Legend Entry Shortcut Menu

50 Formula Bar Shortcut Menu

51 PivotTable Context Menu Shortcut Menu

52 Query Shortcut Menu

53 Query Layout Shortcut Menu

54 AutoCalculate Shortcut Menu

55 Object/Plot Shortcut Menu

56 Title Bar (Charting) Shortcut Menu

57 Layout Shortcut Menu

58 Pivot Chart Popup Shortcut Menu

59 Phonetic Information Shortcut Menu

60 Auto Sum Shortcut Menu

61 Paste Special Dropdown Shortcut Menu

EXCEL BUILT-IN MENUS AND TOOLBARS (CONTINUED)

173646-X AppA.F 10/16/01 2:40 PM Page 319

VBA AND EXCEL OBJECT MODEL
QUICK REFERENCE

APPENDIX

320

Excel CommandBars (Continued)

CONSTANT NAME TYPE

62 Find Format Shortcut Menu

63 Replace Format Shortcut Menu

64 WordArt Toolbar

65 Picture Toolbar

66 Shadow Settings Toolbar

67 3-D Settings Toolbar

68 Drawing Canvas Toolbar

69 Organization Chart Toolbar

70 Diagram Toolbar

71 Borders Toolbar

72 Borders Toolbar

73 Draw Border Toolbar

74 Chart Type Toolbar

75 Pattern Toolbar

76 Font Color Toolbar

77 Fill Color Toolbar

78 Line Color Toolbar

79 Order Toolbar

80 Nudge Toolbar

81 Align or Distribute Toolbar

82 Rotate or Flip Toolbar

83 Lines Toolbar

84 Connectors Toolbar

85 AutoShapes Toolbar

86 Callouts Toolbar

87 Flowchart Toolbar

88 Block Arrows Toolbar

EXCEL BUILT-IN MENUS AND TOOLBARS (CONTINUED)

173646-X AppA.F 10/16/01 2:40 PM Page 320

VBA QUICK REFERENCE A

321

Excel CommandBars (Continued)

CONSTANT NAME TYPE

89 Stars & Banners Toolbar

90 Basic Shapes Toolbar

91 Insert Shape Toolbar

92 Shapes Shortcut Menu

93 Inactive Chart Shortcut Menu

94 Excel Control Shortcut Menu

95 Curve Shortcut Menu

96 Curve Node Shortcut Menu

97 Curve Segment Shortcut Menu

98 Pictures Context Menu Shortcut Menu

99 OLE Object Shortcut Menu

100 ActiveX Control Shortcut Menu

101 WordArt Context Menu Shortcut Menu

102 Rotate Mode Shortcut Menu

103 Connector Shortcut Menu

104 Script Anchor Popup Shortcut Menu

105 Canvas Popup Shortcut Menu

106 Organization Chart Popup Shortcut Menu

107 Diagram Shortcut Menu

108 Layout Shortcut Menu

109 Select Shortcut Menu

110 Task Pane Toolbar

111 Add Command Shortcut Menu

112 Built-in Menus Shortcut Menu

113 System Shortcut Menu

114 Clipboard Toolbar

115 Envelope Toolbar

116 Online Meeting Toolbar

EXCEL BUILT-IN MENUS AND TOOLBARS (CONTINUED)

173646-X AppA.F 10/16/01 2:40 PM Page 321

The CD-ROM included in this book contains
many useful files and programs. Before installing
any of the programs on the disc, make sure that

a newer version of the program is not already
installed on your computer. For information on

installing different versions of the same program,
contact the program’s manufacturer. For the latest and
greatest information, please refer to the ReadMe file
located at the root of the CD-ROM.

WHAT’S ON THE CD-ROM

322

SYSTEM REQUIREMENTS
To use the contents of the CD-ROM, your computer must
be equipped with the following hardware and software:

• A PC with a Pentium III or faster processor

• Microsoft Windows 95, 98, 2000, NT 4.0, or
Windows XP

• Microsoft Excel 2000 or 2002

• At least 128MB of total RAM installed on your
computer

• A double-speed (8x) or faster CD-ROM drive

• A monitor capable of displaying at least 256 colors
or grayscale

• A network card

AUTHOR’S SOURCE CODE
These files contain all the sample code from the book. You
can browse these files directly from the CD-ROM, or you
can copy them to your hard drive and use them as the basis
for your own projects. To find the files on the CD-ROM,
open the D:\Samples folder. To copy the files to your hard
drive, just run the installation program D:\Samples.EXE.
The files will be placed on your hard drive at
C:\ProgramFiles\ExcelProgVB. You will need
Microsoft Excel installed on the machine to run the sample
macros.

ACROBAT VERSION
The CD-ROM contains an e-version of this book that you
can view and search using Adobe Acrobat Reader. You
cannot print the pages or copy text from the Acrobat files.
An evaluation version of Adobe Acrobat Reader is also
included on the disc.

INSTALLING AND USING THE SOFTWARE
For your convenience, the software titles appearing on the
CD-ROM are listed alphabetically.

Acrobat Reader
Freeware. Acrobat Reader lets you view the online version of
this book. For more information on using Adobe Acrobat
Reader, see the section “Using the E-Version of This Book.”
From Adobe Systems, www.adobe.com.

Barcode Add-in for Office
Demo. Barcode Add-in from IDAutomation.com Inc.
provides the ability to print the following types of barcodes
from Excel: Code 39, UPC, EAN, UCC-128, Code 128,
POSTNET, PLANET, Codabar, Booklan, interleaved 2 of 5,
no-interleaved 2 of 5, and Code11. You can find more
information at www.idautomation.com/activex/.com.

EXCEL PROGRAMMING

183646-x AppB.F 10/16/01 2:40 PM Page 322

ABOUT THE CD-ROM

323

Code Crafter 2000
30-day trial. Code Crafter 2000 from Code Craft Corporation
provides a collection of utility functions that can be used to
create and maintain VBA code. You can find more
information at www.codecrafter.com.

MsgBuilder
Freeware. MsgBuilder from TraderCat Ltd. is a development
tool that enables you to create properly formatted VBA
MsgBox statements and functions. You can find more
information at www.tradercat.com.

VBAcodePrint Add-In
Shareware. VBAcodePrint from StarPrint2000 provides the
ability to print VBA source code using user-defined colors
and fonts. You can customize page margins, line spacing,
print quality, paper orientation, scaling, and more. You can
find more information at www.jn-software.com.

VBCode Cutter
Shareware. VBCode Cutter from Progressive Data Solutions
is a VBA code Library & Development tool that enables you
to store VBA code snippets that you can drag and drop into
a module. You can find more information at
www.pdsolutions.com.au.

TROUBLESHOOTING
We tried our best to compile programs that work on most
computers with the minimum system requirements. Your
computer, however, may differ, and some programs may not
work properly for some reason.

The two most likely problems are that you do not have
enough memory (RAM) for the programs you want to use,
or you have other programs running that are affecting the
installation or running of a program. If you receive error
messages like Not enough memory or Setup cannot
continue, try one or more of these methods and then try
using the software again:

• Turn off any antivirus software.

• Close all running programs.

• In Windows, close the CD-ROM interface and run
demos or installations directly from Windows
Explorer.

• Have your local computer store add more RAM to
your computer.

If you still have trouble installing the items from the
CD-ROM, please call the Hungry Minds Customer Service
phone number: 800-762-2974 (outside the U.S.:
317-572-3994). You can also contact Hungry Minds Customer
Service by e-mail at techsupdum@hungryminds.com.

B

183646-x AppB.F 10/16/01 2:40 PM Page 323

You can view Excel Programming: Your visual
blueprint for creating interactive spreadsheets
on your screen using the CD-ROM included at

the back of this book. The CD-ROM allows you to
search the contents of each chapter of the book for a
specific word or phrase. The CD-ROM also provides a
convenient way of keeping the book handy while
traveling.

You must install Adobe Acrobat Reader on your computer
before you can view the book on the CD-ROM. This

program is provided on the disc. Acrobat Reader allows you
to view Portable Document Format (PDF) files, which can
display books and magazines on your screen exactly as
they appear in printed form.

To view the contents of the book using Acrobat Reader,
display the contents of the disc. Double-click the PDFs
folder to display the contents of the folder. In the window
that appears, double-click the icon for the chapter of the
book you want to review.

USING THE E-VERSION OF THE BOOK

USING THE E-VERSION OF THE BOOK

324

+

FLIP THROUGH PAGES

⁄ Click one of these
options to flip through
the pages of a section.

First page

Previous page

Next page

Last page

ZOOM IN

⁄ Click to magnify
an area of the page.

¤ Click the area of the
page you want to magnify.

� Click one of these
options to display the page
at 100% magnification ()
or to fit the entire page
inside the window ().

EXCEL PROGRAMMING

183646-x AppB.F 10/16/01 2:40 PM Page 324

ABOUT THE CD-ROM

325

� Repeat steps 1
and 3 to find the next
instance of the text.

FIND TEXT

⁄ Click to search
for text in the section.

� The Find dialog box
appears.

¤ Type the text you
want to find.

‹ Click Find to start
the search.

� The first instance of
the text is highlighted.

To install Acrobat Reader, insert the CD-ROM
into a drive. In the screen that appears, click
Software. Click Acrobat Reader and then
click Install at the bottom of the screen. Then
follow the instructions on your screen to
install the program.

You can make searching the book more
convenient by copying the PDF files to your
own computer. Display the contents of the
CD-ROM and then copy the PDFs folder
from the CD to your hard drive. This allows
you to easily access the contents of the book
at any time.

Acrobat Reader is a popular and useful program.
There are many files available on the Web that are
designed to be viewed using Acrobat Reader. Look
for files with the .pdf extension. For more
information about Acrobat Reader, visit the
Web site at www.adobe.com/products/
acrobat/readermain.html.

B

183646-x AppB.F 10/16/01 2:40 PM Page 325

EXCEL PROGRAMMING

326

HUNGRY MINDS, INC. END-USER
LICENSE AGREEMENT
READ THIS. You should carefully read these terms
and conditions before opening the software packet(s)
included with Excel Programming: Your visual
blueprint for creating interactive spreadsheets. This is
a license agreement (Agreement) between you and
Hungry Minds, Inc. (HMI). By opening the
accompanying software packet(s), you acknowledge
that you have read and accept the following terms and
conditions. If you do not agree and do not want to be
bound by such terms and conditions, promptly return
the Book and the unopened software packet(s) to the
place you obtained them for a full refund.

1. License Grant. HMI grants to you (either an
individual or entity) a nonexclusive license to use one
copy of the enclosed software program(s) (collectively,
the “Software”) solely for your own personal or
business purposes on a single computer (whether a
standard computer or a workstation component of a
multi-user network). The Software is in use on a
computer when it is loaded into temporary memory
(RAM) or installed into permanent memory (hard disk,
CD-ROM, or other storage device). HMI reserves all
rights not expressly granted herein.

2. Ownership. HMI is the owner of all right, title,
and interest, including copyright, in and to the
compilation of the Software recorded on the disk(s) or
CD-ROM (“Software Media”). Copyright to the
individual programs recorded on the Software Media
is owned by the author, or other authorized copyright
owner of each program. Ownership of the Software
and all proprietary rights relating thereto remain with
HMI and its licensers.

3. Restrictions On Use and Transfer.

(a) You may only (i) make one copy of the Software
for backup or archival purposes, or (ii) transfer the
Software to a single hard disk, provided that you keep

the original for backup or archival purposes. You may
not (i) rent or lease the Software, (ii) copy or
reproduce the Software through a LAN or other
network system or through any computer subscriber
system or bulletin-board system, or (iii) modify, adapt,
or create derivative works based on the Software.

(b) You may not reverse engineer, decompile, or
disassemble the Software. You may transfer the
Software and user documentation on a permanent
basis, provided that the transferee agrees to accept
the terms and conditions of this Agreement and you
retain no copies. If the Software is an update or has
been updated, any transfer must include the most
recent update and all prior versions.

4. Restrictions on Use of Individual Programs. You
must follow the individual requirements and
restrictions detailed for each individual program in
Appendix B of this Book. These limitations are also
contained in the individual license agreements
recorded on the Software Media. These limitations
may include a requirement that after using the
program for a specified period of time, the user must
pay a registration fee or discontinue use. By opening
the Software packet(s), you will be agreeing to abide
by the licenses and restrictions for these individual
programs that are detailed in Appendix B and on the
Software Media. None of the material on this Software
Media or listed in this Book may ever be redistributed,
in original or modified form, for commercial purposes.

5. Limited Warranty.

(a) HMI warrants that the Software and Software
Media are free from defects in materials and
workmanship under normal use for a period of
sixty (60) days from the date of purchase of this
Book. If HMI receives notification within the warranty
period of defects in materials or workmanship, HMI
will replace the defective Software Media.

183646-x AppB.F 10/16/01 2:40 PM Page 326

ABOUT THE CD-ROM B

327

(b) HMI AND THE AUTHOR OF THE BOOK
DISCLAIM ALL OTHER WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING WITHOUT LIMITATION
IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, WITH
RESPECT TO THE SOFTWARE, THE PROGRAMS, THE
SOURCE CODE CONTAINED THEREIN, AND/OR THE
TECHNIQUES DESCRIBED IN THIS BOOK. HMI DOES
NOT WARRANT THAT THE FUNCTIONS CONTAINED
IN THE SOFTWARE WILL MEET YOUR
REQUIREMENTS OR THAT THE OPERATION OF THE
SOFTWARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal
rights, and you may have other rights that vary from
jurisdiction to jurisdiction.

6. Remedies.

(a) HMI’s entire liability and your exclusive remedy
for defects in materials and workmanship shall be
limited to replacement of the Software Media, which
may be returned to HMI with a copy of your receipt at
the following address: Software Media Fulfillment
Department, Attn.: Excel Programming: Your visual
blueprint for creating interactive spreadsheets, Hungry
Minds, Inc., 10475 Crosspoint Blvd., Indianapolis, IN
46256, or call 1-800-762-2974. Please allow four to six
weeks for delivery. This Limited Warranty is void if
failure of the Software Media has resulted from
accident, abuse, or misapplication. Any replacement
Software Media will be warranted for the remainder
of the original warranty period or thirty (30) days,
whichever is longer.

(b) In no event shall HMI or the author be liable for
any damages whatsoever (including without limitation
damages for loss of business profits, business
interruption, loss of business information, or any other
pecuniary loss) arising from the use of or inability to
use the Book or the Software, even if HMI has been
advised of the possibility of such damages.

(c) Because some jurisdictions do not allow the
exclusion or limitation of liability for consequential or
incidental damages, the above limitation or exclusion
may not apply to you.

7. U.S. Government Restricted Rights. Use,
duplication, or disclosure of the Software for or on
behalf of the United States of America, its agencies
and/or instrumentalities (the “U.S. Government”) is
subject to restrictions as stated in paragraph (c)(1)(ii)
of the Rights in Technical Data and Computer
Software clause of DFARS 252.227-7013, or
subparagraphs (c) (1) and (2) of the Commercial
Computer Software - Restricted Rights clause at FAR
52.227-19, and in similar clauses in the NASA FAR
supplement, as applicable.

8. General. This Agreement constitutes the entire
understanding of the parties and revokes and
supersedes all prior agreements, oral or written,
between them and may not be modified or amended
except in a writing signed by both parties hereto that
specifically refers to this Agreement. This Agreement
shall take precedence over any other documents that
may be in conflict herewith. If any one or more
provisions contained in this Agreement are held by
any court or tribunal to be invalid, illegal, or otherwise
unenforceable, each and every other provision shall
remain in full force and effect.

183646-x AppB.F 10/16/01 2:40 PM Page 327

328

INDEX

Symbols
‘ (single quote) before comment lines in

VBA code, 43
‘ (apostrophe), 60, 61
- (subtraction) operator, 48, 56
&

before shortcut key characters in
menu options, 17, 248, 249, 250
specify the data type for a variable, 55

& (concatenation) operator, 48, 62,
110, 111

!, data type for a variable, 55
#, data type for a variable, 55
####, 209
$, data type for a variable, 55
$ (String type declaration symbol),

122, 123
% (ALT) character, 295
%, data type for a variable, 55
* (asterisk) wildcard, 156, 158
* (multiplication) operator, 48, 56
/ (division) operator, 48, 56
? (question mark symbol) wildcard, 156,

158
@, data type for a variable, 55
\ (integer division) operator, 48, 56
^ (CTRL) character, 295
^ (exponential) operator, 48, 56
_ (underscore) character in event-

handling procedures, 235
~ (ENTER) character, 295
+ (addition) operator, 48, 56, 62
+ (SHIFT) character, 295
<Out of context> value, 132
= (equals sign) operator, 72

A
absolute references for macros, 4
Access databases, 145
AccessMode parameter, 147
Acrobat Reader, 322, 325
Activate method, 151, 183
active menu bar, 248
active workbook, 3
ActiveCell property, 64

ActivePrinter parameter, 178
ActiveSheet property, 69, 155, 161
ActiveWorkbook property, 146, 152
Add method

to add controls, 246
with the ChartObjects object, 260
with the Charts object, 258
with the ChartObjects collection,

229, 244–245
with a Controls object, 228
create new menus, 248
with a SeriesCollection object,

264
with the Sheets object, 160
of the Workbooks collection, 154

Add Watch dialog box, 132, 133
AddComment method, 214–215
addition (+) operator, 56, 62
AddToMRU parameter, 140, 147
After parameter

with the Add method, 160, 161
with the Copy method, 166
with Find, 222, 223
with the Move method, 164

AllowEdit property, 191
alphabetical order, sort worksheets in,

180–181
Alt key, menu option shortcuts, 17
Alt+F11 shortcut key, 23, 25
Always trust macros from this source

option, 41
And operator, 49
ANSI character code, 126
apostrophe (‘), 60, 61
application events, 279, 286, 287
Application object, 64
Area Collection, 187
area ranges, 186–187
AreaGroups method, 269
arguments, 74
arithmetic operators, 48, 56
“Array already dimensioned” error

message, 88
Array function, 86, 87
array functions, 301
array is fixed or temporarily locked

error, 139

arrays, 47
check if a specified value is, 79
convert lists to, 86–87
declare, 82–85
redimension, 88–89
specify the size of, 82, 83
user-defined data types in, 90–91

As statement, 68
Assign Macro dialog box, 15, 17, 35
asterisk (*) wildcard, 156, 158
Author property, 215
Auto Data Tips option, 29
Auto Indent option, 29
Auto List Member option, 29
Auto Quick Info option, 29
Auto Syntax Check option, 29, 128
AutoFill method, 216–217
AutoFit method, 209
available macros, 6
Axes collection object, 274
Axes method, 274

B
BackColor control property, 231
background color for cells, 211
Barcode Add-in for Office, 322
BarGroups method, 269
.bas file, save modules in, 32, 33
Before parameter

with the Add method, 160, 161
with the Copy method, 166
with the Move method, 164
specify an index value, 249

BeforeClose event, 282
BeforeDragOver event, 237
BeforeRightClick event, 296–297
BeforeSave event, 284, 285
BeforeUpdate event, 237
bits, 45
Bold property, 185
Boolean data type, 45
Border objects for bars, 270
BorderAround method, 220–221
borders around a range of cells, 220–221
braces {} around on-display characters,

295

193646-X Index.F 10/16/01 2:40 PM Page 328

329

EXCEL PROGRAMMING:
Your visual blueprint for

Creating Interactive Spreadsheets

Break mode, 130, 131
break points, 129, 130–131
Break When Value Changes option, 132
Break When Value is True option, 132
built-in constants, 59
built-in data types, 45
built-in dialog boxes, 65, 76–77
built-in Excel functions, 108–109
built-in VBA functions, 123
BuiltIn property, 254
Button Editor dialog box, 15
button images, 15
buttons, 14–15, 77
Buttons argument, 110, 111
Byte data type, 45
ByVal keyword, 285

C
Calculate event, 291
Call keyword, 107
Call statement, 37, 50, 106–107
Cancel argument of QueryClose, 239
Caption control property, 231, 248, 250
Case Else statement, 102, 103
case sensitivity of keyboard shortcuts, 8
Case statements, 102
category axis, 274
CategoryLabels parameter, 262
CategoryTitle parameter, 262
CD-ROM with this book, 322–323
cell reference method, 57
Cell1 parameter, 182
Cell2 parameter, 182
cells

add comments to, 214–215
background color for, 211
copy and paste ranges of, 210–211
custom paste values in, 212–213
cut and paste ranges of, 208–209
define a range of, 182–183
delete a range of, 190–191
fill ranges of, 216–217
find and replace values in, 224–225
find specific values of, 222–223
hide a range of, 192–193

insert a range of, 198–199
monitor a range for changes, 290–291
place borders around a range of,

220–221
reference specific, 57

Cells property, 57, 83, 184–185
certified digital signatures, 40
Change Button Image menu, 15
Change event, 237, 290–291
Characters object, 199
chart elements, constants for, 297
chart events, 277
chart legend, 273. See also legend
Chart object, 65, 167
chart sheets, 256

compared to embedded charts, 261
create, 160, 258–259
name, 170
remove from workbooks, 162

chart types, 257, 268–269
Chart Wizard, 262–263
ChartArea object, 266
Chart_BeforeRightClick

procedure, 296–297
ChartGroup objects, 269
charts, 256–257

add data tables to, 272–273
add new series to, 264–265
create with multiple chart types,

268–269
customize axes on, 274–275
embed within worksheets, 260–261
format text in, 266–267
guidelines on, 275
protect, 176–177

Charts object, Delete method
with, 163

ChartType property, 260, 268
ChartWizard method, 262–263
CheckBox control, 226, 227
child objects, 64, 256–257
Classes list box, 66
Clear method, 207
ClearComments method, 214
ClearContents method, 207

ClearFormats method, 207
Click event, 232, 234, 235, 237, 276
Close method, 152–153
CloseMode argument, 239
Code Crafter 2000, 323
code modules, 30–31. See also modules
Code Settings, 128
code watches. See watches
code window for a UserForm, 234
Code window in the Visual Basic Editor,

20, 23, 24, 28–29, 30
Collate parameter with the
PrintOut method, 178

collections, 64, 65
Color property, 71, 185
ColorIndex parameter, 220
ColorIndex property, 211
colors for fonts, 71
column of text, convert into multiple

columns, 204–205
ColumnGroups method, 269
ColumnOffset parameter, 188
columns

set the width of, 200–201
specify as Range objects, 189

ComboBox control, 226, 227
command bars, IDs of controls used

on, 247
Command tab, 14, 16–17
CommandBars, 228–229, 318–321
CommandButton control, 226, 227, 234
CommandButton_Click subroutine,

234, 235
CommandButtonControl objects, 250
comment lines in macros, 43
comments, 60

add to cells, 214–215
in VBA code, 60–61

compare argument for StrComp, 126
comparison operators, 49
compile errors, 128
compiled language, 44
concatenation operator (&), 48, 62,

110, 111
ConflictResolution parameter, 147
ConsecutiveDelimiter

parameter, 143

193646-X Index.F 10/16/01 2:40 PM Page 329

330

INDEX

Const statement, 47, 58
constant values, 67, 76
constants

Excel Object Model, 311–317
in VBA, 47, 58–59

Contents parameter, 174
Context argument, 110, 112
control events, capture of, 237
control IDs, 247
control properties for UserForms, 231
controls, 227, 246–247
Controls property, reference specific
CommandBar objects, 246

Converter parameter with the Open
method, 141

copied modules, 27
Copies parameter, 178
Copy button, 42
Copy method, 65, 74, 166, 167, 210–211
CopyOrigin parameter, 198
CorruptLoad parameter, 141
Count method, 158, 161, 164, 166
Count parameter, 160
Count property, 74, 165, 180, 187, 196
counter variables, 93, 96, 97
Courier New font, 28
Create Digital Certificate dialog box, 19
CreateBackup parameter, 147
Ctrl+R shortcut key, 23
Ctrl+Shift+F8, 135
CurDir function, 157
Currency data type, 45, 55
current date and time, 114–115
custom dialog boxes, 21, 230–231,

234–237
Custom Menu Item option, 16
custom menus, 17, 248–249
custom toolbars, 244–245, 254–255
Customize Control dialog box, 240
Customize dialog box, 11, 14, 16–17, 35
Cut method, 208–209

D
data series, 264–265, 270–271
data sources, 145, 259
data tables for charts, 272–273

data type conversion functions, 301–302
data types, 45

for constants, 58
user-defined, 44, 90–91
in variable names, 91

data values, storage locations for, 78
DataTable object, 272
DataType parameter, 143
date and time functions, 303
Date argument, 118
Date data type, 45
date expressions, 118–119
Date function, 114
date range in Excel, 45
DateDiff function, 116–117
dates

check if a specified value is, 79
determine the amount of time

between, 116–117
retrieve the current, 114, 115

dBase files, 145
DblClick event, 237
debug, basics of, 128–129
Decimal data type, 46
DecimalSeparator parameter,

143, 204
declaration of variables, 54–55
Default argument with InputBox,

112
Define Name dialog box, 195
Delete button in the Macro dialog box, 10
Delete dialog box, 77
Delete method

with the Charts object, 163
with the CommandBar object,

254–255
with a Range object, 74
remove a data series, 265
remove a range of cells, 190–191
with the Sheets object, 162–163
with the Worksheets object, 163

delimiter character, 141, 142, 143, 204
Delimiter parameter, 141
Description property of the Err

object, 129
design errors, 128
Design mode, 131

dialog box constants, 76
dialog boxes

call from procedures, 232–233
capture input from custom, 234–237
create custom, 230–231
display built-in, 76–77
name, 65
validation of input from, 238–239

Dialog objects, 65, 76
dialog sheets, 170
Dialogs collection, 65, 76
digital certification, 19
digital signatures, 18, 19

assign to macros, 40–41
types of, 40

Dim keyword, 80
Dim statement, 55, 68, 84, 288
DisplayAlerts property, 153
division by zero error, 139
division (/) operator, 48, 56
Do Until loop, 94–95
Do While loops, 92–93, 95
docking feature, 24, 25
Double data type, 45, 55
DoughnutGroups method, 269
down bars, 270
DrawingObjects parameter, 174, 176
dynamic arrays, 47, 88

E
EarliestTime parameter, 292, 293
Edit Button Image option, 15
Editable parameter, 141
Editor Format tab, 28
Editor tab, 29
Element In Group statement, 98
elements, 47, 234
Else statement, 100
embedded charts, 256, 261
End If statement, 100, 101
End Select statement, 102, 103
End Sub command, 51
End Type statement, 90
Enter event, 237
Eqv operator, 49
Err object, 129, 136, 138

193646-X Index.F 10/16/01 2:40 PM Page 330

331

EXCEL PROGRAMMING:
Your visual blueprint for

Creating Interactive Spreadsheets

Err.Description property, 139
Err.Number property, 138
error codes for runtime messages, 138
errors, types of, 128–129
event-handling procedures, 235, 276, 289
events, 234, 276, 287
e-version of this book, 322, 324–325
Excel

built-in menus and toolbars, 318–321
ChartObjects, 318–321
date range in, 45, 114
dialog boxes in, 77
time numbering system, 293
toggle with Visual Basic Editor, 23

Excel object library, 66
Excel Object Model, 64–65, 74, 108,

311–317
Excel window, 25, 36
execution, 136–137
Exit Do statement, 95
Exit Sub command, 105
Exit Sub statement, 106, 136
exponential (^) operator, 48, 56
Export File dialog box, 242
Export Page dialog box, 241
Expression argument, 120
expressions, functions as part of, 52
Extend method, 265
extra spaces, remove from a string,

122–123
ExtraTitle parameter, 262

F
F1 key, 23, 67 See also Shortcut Keys
F2 key, 66 See also Shortcut Keys
F4 key, 23 See also Shortcut Keys
F7 key, 23 See also Shortcut Keys
F8 key, 135 See also Shortcut Keys
FaceID property, 246, 247
FieldInfo parameter, 143
file handling functions, 304
file handling statements, 298
file types for the Open dialog box,

144, 145
FileFilter parameter, 144, 145
FileFormat parameter, 146, 147,

172, 173

FileFormat property, 155
FileName parameter

with the Close method, 152
with the OpenText method, 142, 143
with the Save As method, 146, 147,

172
with SaveWorkspace, 149

Filename property, 158, 159
files, 144–145, 156–157, 158–159
FileSearch object, 158–159
FileType property, 159
Fill methods, 219
Fill parameter, 218
FillAcrossSheets method, 218–219
FilterFilter parameter, 148
FilterIndex parameter, 144, 148
financial functions, 304–305
Find method, 222–223
FindControl method, 249
FindFormat property, 225
FindPrevious method, 223
Firstdayofweek argument, 116
Firstdayofyear argument, 116
fixed-length arrays, 47
fixed-length string variables, 62
fixed-length strings, 46
fixed-length variables, 63
fixed-size arrays, 88
fixed-width fonts, 28
focus, 23
folder handling functions, 304
folder handling statements, 298
folders, 157
font attributes for charts, 266
font color, 71
Font control property, 231
Font object, 185
Font object properties, 266
Font property, 272, 273
font styles, 28
FontStyle property, 185
For Each Next loop, 98–99, 150
For Each Next statement, 245
For Next loops, 86, 96–97, 180
For statement, 96
Format function, 121

format function predefined formats,
310–311

Format parameter, 141, 262
FormatCurrency function, 120
FormatDateTime function, 118–119
FormatNumber function, 120
FormatPercentage function, 120
Forms. See UserForms
Forms folder node, 21
FoundFile object, 158
FoundFiles property, 159
Frame control, 226, 227
From parameter, 178
FullName property, 155
function calls, simplify with named

arguments, 113
functions, 46, 52–53

call subroutines and functions, 81
constants and characters list for VBA,

308–311
hide, 81
quick reference of VBA, 301–308

G
Gallery parameter, 262, 263
GetOpenFilename method, 144–145
GetSaveAsFilename method, 148–149
global macros, 3, 7
global variables, 80–81
GoTo commands in macros, 104–105
graphical layout window, 234
gridlines, 275
GroupDigits argument, 120

H
HasDataTable property, 272
HasLegend parameter, 262
HasLegend property, 273
HasPassword property, 155
HasUpDownBars property, 270
Height property, 203, 231
Help argument, 110
Helpfile argument, 112
hidden files, 12
hidden macros, 38–39
Hidden property, 65, 192–193

193646-X Index.F 10/16/01 2:40 PM Page 331

332

INDEX

hidden workbooks, 10
Hide method, 233
High security setting, 18
hot key reference, 35

I
ID property for controls, 247
ID settings for menus, 249
If Then statement, 100–101

in alphabetical sorting, 181
check the status of a control, 238
combine functions with, 79
combine with a procedure call

statement, 106–107
place on one line, 107

IgnoreReadOnlyRecommended
parameter with the Open method, 140

Image control, 226, 227
images on buttons, 15
Immediate window, 20, 24
Imp operator, 49
Import File dialog box, 33, 243
Import Page dialog box, 241
IncludeLeadingDigit argument, 120
indentation of VBA code, 101
index values of array elements, 86
information functions, 305
InitialFilename parameter, 148
input, validate from a dialog box, 238–239
InputBox function, 112–113
Insert dialog box, 77
Insert Function dialog box, 53, 109
Insert method, 198–199
Integer data type, 45, 55
integer division (\) operator, 48, 56
IntelliSense technology, 21
interaction functions, 306
interaction statements, 298
Interior object, 211
international macro sheet, 160
interpreted language, 44
Intersect method for ranges,

206–207, 253
intersection of two ranges, 182
Interval argument, 116, 117
Invalid procedure call error, 139

Is operator, 72
IsArray function, 79
IsDate function, 79, 116
IsNull function, 79
IsNumeric function, 78, 79
IsObject function, 79
Italic property, 185
items, add to menus, 250–251

J
join strings together, 62–63
jump to a specific location in a macro,

104–105

K
key combinations, special characters

in, 295
Key parameter, 294
keyboard shortcuts, 4, 5, 8–9
KeyDown event, 237
Kill statement, 156–157

L
Label control, 226, 227
labeled code, 105
labels, 104
LastModified property, 159
LatestTime parameter, 292, 293
LBound function, 89
LCase function, 127
leap years, 115
Left function, 124, 125
Left property of the Range object, 203
legend. See chart legend
legend text, 266
Len function, 63
length argument, 124
levels for variables, 80
LineGroups method, 269
lines of code, comment out, 61
LineStyle parameter, 220
ListBox control, 226, 227, 234
lists, convert to arrays, 86–87
Local parameter, 141, 143, 147
Local window, 20, 130
Lock project for viewing option, 27

locked cells, 174
locked projects, 27, 38
logical errors, 129, 132
logical operators, 49
Long data type, 45, 55
LookAt parameter, 222, 223, 224
LookIn parameter, 222, 223
LookIn property, 158, 159
Lotus 1-2-3, macros in, 2
Lotus files, 145
Low security setting, 18
lower bound of an array, 83, 89
lowercase characters, convert to

uppercase, 127
LTrim function, 122

M
Macro dialog box, 31, 38, 39

call subroutines with parameters, 51
display available macros, 7, 8, 10
open, 42
open the Visual Basic Editor from, 23
rename macros via, 34

macro languages, 44
Macro menu, 251
Macro Options dialog box, 8
Macro Recorder, 2, 3, 4
macro references, 35
macro sheets, 160, 162, 170
macro toolbar buttons, 14
macro viruses, 18
macros, 2, 4–5, 7

assign digital signatures to, 40–41
assign to menus, 16–17
assign to toolbar buttons, 14–15
built-in Excel functions in, 108–109
create a custom menu for, 17
create startup, 36–37
delete, 10–11, 12–13
hide, 38–39
jump to a specific location in, 104–105
locations for the storage of, 6
perform mathematical calculations

within, 56
rename, 34–35
run, 6–7

193646-X Index.F 10/16/01 2:40 PM Page 332

333

EXCEL PROGRAMMING:
Your visual blueprint for

Creating Interactive Spreadsheets

select, 6
set security for, 18–19
trust from a particular source, 41
update recorded, 42–43

Macros In Field, 7
major gridlines, 275
Margin Indicator Bar check box, 28
MatchByte parameter, 222, 223
MatchCase parameter, 222, 224
MatchTextExactly property, 159
mathematical calculations, 56–57
mathematical functions, 306–307
Me operator, 283
Medium security setting, 18
Members list box in the Object Browser, 66
menu items, 252
menus

add items to, 250–251
assign macros to, 16–17
built-in to Excel, 318–321
create, 229, 248–249
IDs for, 249
modifications to, 11, 228–229

methods, 65, 74
Microsoft Excel Objects folder, 21
Microsoft Works 2.0 files, 145
Mid function, 124, 125
MOD operator, 48, 56
modal parameter, 232
modules. See also code modules

change the name of copied, 27
create within the Visual Basic Editor,

30–31
export to a file, 32, 33
insert exported into any project, 33
name in the Visual Basic Editor, 30, 31
for projects, 21
remove from the Visual Basic Editor,

32–33
select in projects, 22

monitor resolution, 25
monospaced font, 200
MouseDown event, 237
Move dialog box, 241
Move method, 164
MS-DOS wildcard file specifications, 145
MSForms object library, 66

MsgBox function, 55, 110–111, 308–309
MsgBuilder, 323
MsoFileType constants, 313–314
multidimensional arrays, 47, 84–85, 99
MultiPage control, 226, 227, 235
multiple area ranges, 186–187
multiplication (*) operator, 48, 56
MultiSelect parameter, 144

N
Name box for ranges, 195
Name field in the Customize menu, 35
Name parameter with the Range

property, 182
Name property

assign a specific name to a range of
cells, 194–195

in conjunction with the Parent
property, 171

of the Sheets object, 170–171
for a UserForm, 230
with a workbook, 150
of the Workbook object, 155

named arguments, 75, 113
named parameters, 142
named ranges, 194, 195
NamedFormat argument, 118, 119
names. See also project names

for modules in Visual Basic Editor, 31
naming convention for variables, 91
nested If Then statements, 100
nested looping, 180
New Document task pane, 77
New Menu option, 17
NewWorkbook application event,

286–288
Next statement, 96, 98
nodes, 21
Not operator, 49
Nothing keyword, 73
Notify parameter, 141
Now function, 114, 293
Null, 79
number formats, 121
Number property, 129, 138
NumDigitsAfterDecimal

argument, 120

numeric characters in the Format
function, 121

numeric data types, 45
numeric expressions, 120–121
numeric values, 57, 79

O
Object Browser, 64, 66–67, 287
object collections. See collections
object comparison, 72
Object data type, 45
“Object doesn’t support this property or

method” error message, 108
object libraries, 66
Object list box, 20, 287
object methods, 74–75
Object Model, 64. See also Excel Object

Model
object variables, 68–69, 72–73
objects, 21, 64, 65, 70–71, 72, 79
Office object library, 66
Offset property, 188–189
On Error Resume Next statement,

129, 136–137, 138
OnAction property, 246, 247, 250
one-dimensional array, 47
OnKey event, 294–295
OnTime event, 292–293
Open dialog box, 6, 77, 144–145
Open event, 280
Open method, 140–141, 281
Open property, 144
open workbooks, 150–151
OpenConflictDocument

parameter, 141
Open_DialogBox() macro, 77
OpenText method, 142–143
Operation parameter with
PasteSpecial, 212

operators, 48–49
Option Base 1 statement, 83
Option Compare statement, 126, 127
Option Explicit statement, 54
optional arguments, call procedures

with, 75
OptionButton control, 226, 227
Options dialog box, 28–29

193646-X Index.F 10/16/01 2:40 PM Page 333

334

INDEX

Or operator, 49
Origin parameter, 141, 143

P
.Pag extension, 241
PageSetup object, 179
parameters, 51
Parent property, 171
parentheses, effect on precedence

order, 48
Parse method, 205
Password parameter

with the Open method, 140
with the Protect method, 174
with the Save As method, 147,

172, 173
with the Unprotect method, 175

Password property, 155
password protected projects, 26–27
password protection of worksheets,

174–175
passwords, case-sensitivity of, 174, 176
Paste button, 37, 43
Paste parameter, 212
PasteSpecial method, 212–213
Path/File access error message, 156
Path property of the Workbook

object, 155
pathname argument for the Kill

statement, 156
Permission Denied error, 156
personal digital signatures, 40
Personal Macro Workbook, 3, 6, 12–13

add functions to, 53
availability of, 14, 16
place startup macros in, 36
rename macros in, 34, 35
view and modify macros in, 22

personal security certificate, create, 19
personal signature, 18
Personal.xls file, 3, 12
Personal.xls project, 34, 35
PieGroups method, 269
PlotBy parameter, 259, 262
points, 201, 202
pop-up message boxes, 110–111

pound signs, specify dates and times, 45
precedence order for arithmetic

operators, 48
predefined Excel shortcut keys, override, 5
Preserve statement, 88
Preview parameter, 178
print area, specify for a worksheet, 179
Print dialog box, 77
PrintArea property, 179
PrintOut method, 178
PrintToFile parameter, 178
private functions, 52
Private keyword, 50, 52, 80, 81
private module level, 80
Private statement, 38, 39
private subroutines, 50
procedure level, 80
Procedure list box, 20
Procedure parameter, 292, 294
procedure-level arrays, 84
procedures, 46

call, 37, 75, 232–233
debug, 130–131, 132–133
execute, 292–293, 294–295
name, 46
run, 280, 282–283, 284–285, 286–289
step over, 135
step through, 134–135

program flow statements, 299–300
Project Explorer, 21, 22, 23, 30, 32
Project Explorer window, 20, 21, 24, 27
project names, 26
Project Properties dialog box, 26–27
Project window. See Project Explorer

window
projects, 21

insert exported modules into, 33
lock, 26, 27, 38
open locked, 27
set properties for, 26–27

Prompt argument
with InputBox, 112
with the MsgBox function, 110

properties
change for objects, 21, 70–71
of objects in the Excel Object Model, 65
set for projects, 26–27

Properties dialog box, 76, 77
Properties window, 20, 21, 23, 24, 27
proportional fonts, 200
Protect method, 75, 174–177
ProtectContents property, 177
ProtectDrawingObjects

property, 177
Protection property, 255
Protection tab, 27
ProtectMode property, 177
ProtectScenarios property, 177
ProtectStructure property, 155
public constants, 58
public functions, 52
Public keyword, 50, 52, 80
public module level, 80
public subroutines, 50

Q
QueryClose event, 239
question mark symbol (?) wildcard,

156, 158
Quick Watch dialog box, 133
Quit method, 153
quotes, enclosing strings, 46

R
Range objects, 65, 85, 182, 206
range of cells, 182–183, 190–191,

192–193, 290–291
Range parameter, 218
Range property, 182–183, 184
ranges

copy to multiple sheets, 218–219
find the intersection of, 206–207
first row or column or, 197
insert into a worksheet, 198–199
resize, 196–197
specify the name of, 194–195

ReadOnly parameter, 140
ReadOnly property, 155
Read-Only Recommended option, 140
ReadOnlyRecommended parameter, 147
ReadOnlyRecommended property, 155
Record Macro dialog box, 4
recorded macros, 42–43

193646-X Index.F 10/16/01 2:40 PM Page 334

335

EXCEL PROGRAMMING:
Your visual blueprint for

Creating Interactive Spreadsheets

Redim statement, 87, 88–89
RefEdit control, 226, 227
Regional Options dialog box, 118, 120
relative references for macros, 4
Remove command, 32
Rename command, 171
Replace method, 224–225
ReplaceFormat parameter, 224, 225
Replacement parameter, 224
Require Variable Declaration option, 29, 54
Reset button, exit out of Break mode, 131
Resize property, 196–197
resolution, 25
Resume statement, 137
Return without GoSub error, 139
RGB function, 71, 220, 270
Right function, 124, 125
RmDir statement, 157
RouteWorkbook parameter, 152
RowHeight property, 202–203
RowOffset parameter, 188
rows, 189, 202–203
RTrim function, 122
run a macro, 6–7
Run mode, 131
Run Sub/User button, 131
runtime errors, 129, 138–139

S
Save As dialog box, 77, 148–149
Save As method, 146, 172
Save method, 146, 149
SaveChanges parameter, 152, 153
Saved property, 155
SaveUI parameter, 284, 285
SaveWorkspace method, 149
Scenarios parameter, 174
Schedule parameter, 292
scope of a variable, 80
ScrollBar control, 226, 227
Search Results window, 67
SearchDirection parameter, 222
SearchFormat parameter, 222, 224, 225
SearchSubFolders property, 158
security, set for macros, 18–19
Security dialog box, 18, 41

Select Case statement, 102–103
Select Certificate dialog box, 41
Select method with a Range object,

182, 183
Selection property, 187
SelfCert.exe, 18, 19
serial number system for dates and

times, 115
series axis, 274
Series object, 264
SeriesCollection object, 268
SeriesLabels parameter, 262
Set statement, 85, 186, 187, 206, 207
SetSourceData method, 259
Shadow property, 185
sheet nodes, 21
SheetProps variable, 168
sheets. See also chart sheets; macro
sheets; worksheets

add to workbooks, 160–161
change the name of, 170–171
copy and paste within workbooks,

166–167
copy ranges to multiple, 218–219
delete from workbooks, 162–163
hide in workbooks, 168–169
keep at least one visible, 168, 169
move within workbooks, 164–165
print, 178–179
save to another file, 172–173
specify with multiple methods, 161
unhide, 168, 169

Sheets object, 166–171
Shift key, keep a Workbook_Open

procedure from execution, 280
Shift parameter, 190–191, 198
Shift+F2 shortcut key, 23
Shift+F8, 135
Shift+F9, 133
Shortcut key field, 4
shortcut keys, 9, 17, 23, 66, 67, 135, 248,

249, 250
shortcut menus, 252–253, 254–255
Show method, 65, 76, 232–233
Show property statement, 77
ShowLegendKey property, 273
ShrinkToFit property, 209
signatures. See digital signatures

Single data type, 45, 55
single quote (‘) before comment lines in

VBA code, 43
Size property with the Font object, 185
SkipBlanks parameter, 212
software on the CD-ROM with this

book, 322–323
source code on the CD-ROM with this

book, 322
Source parameter, 259, 262
Source property of the Err object, 129
spaces, remove extra from a string,

122–123
special characters in key combinations, 295
SpinButton control, 226, 227
standard variables. See variables
start argument for the Mid function, 124
StartRow parameter, 143
startup macros, 36–37
statements, 100–101, 102–103, 298–301
Stdole object library, 66
Step Into command, 135
Step Out command, 135
Step Over command, 135
step through code, 134
Stop Recording toolbar, 5
Store macro in option, 3
StrComp function, 126–127
Strikethrough property, 185
string argument, 124
String data type, 46, 55
string manipulation functions, 307–308
String value, 122, 123
string variables, join the contents of two,

62–63
string1 and string2 arguments, 126
strings, 46

compare two, 126–127
convert to the same case, 127
determine the length of, 125
determine the number of characters

in, 63
join together, 62–63
return a portion of, 124–125

Sub, Function, or Property not defined
error, 139

submenus, 251

193646-X Index.F 10/16/01 2:40 PM Page 335

336

INDEX

subroutines, 30, 46
call conditionally, 106–107
call functions, 52
call subroutines and functions, 81
create to execute VBA commands,

50–51
hide, 81
pass parameters to, 51
types of, 50

Subscript out of range error, 139, 164, 166
Subscript property, 185
subtraction (-) operator, 48, 56
Superscript property, 185
syntax errors, 128

T
Tab Order dialog box, 243
tab order of controls on a UserForm, 243
TabIndex property, 243
TabStop property, 243
TabStrip control, 226, 227
TabStrip control, 235
Target parameter, 290
tasks, 2, 92–93, 94–95, 96–97
Template parameter, 154
temporary toolbar, 244
text, 126, 266–267
Text control property, 231
text descriptions of filters, 145
text files, 141, 142–143, 145
text settings for the Code window, 28
TextAlign control property, 231
TextBox control, 226, 227
TextOrProperty property, 159
TextQualifier parameter, 143
TextToColumns method, 204–205
TextVisualLayout parameter, 143
ThisWorkbook node, 21
ThisWorkbook object, 37, 276, 280,

282, 284
ThisWorkbook property, 146, 152
ThousandsSeparator parameter,

143, 204
Thwate Consulting, 19

time
execute procedures at a specific,

292–293
retrieve the current, 114, 115

Title argument, 110, 112
Title parameter, 144, 262
Title property, 154, 155
To parameter with the PrintOut

method, 178
ToggleButton control, 226, 227
toolbar buttons, 14–15
toolbars, 14

add controls to, 246–247
built-in to Excel, 318–321
create, 229, 244–245
delete custom, 254–255
modify, 11

Toolbox, 226–227
Tools menu, 22
Top property of the Range object, 203
TrailingMinusNumbers

parameter, 143
Transpose parameter, 212
Trim function, 122–123
troubleshoot software from this book, 323
Trust all installed add-ins and templates

check box, 41
Trusted Sources tab, 41
twips, 112
type declaration characters, 55
Type mismatch error, 78, 139
Type statement, 90

U
UBound function, 89
UCase function, 127
Underline property, 185
underscore character (_) in event-

handling procedures, 235
unhidden workbooks, 10
unhide, 193
Unhide dialog box, 12–13, 169
Unhide option, 168
union between two ranges, 182
Union method, 186–187

Unload statement, 232, 233
Unprotect method, 175, 176
unsigned macros, 6
Until condition statement, 94
up bars, 270
UpdateLinks parameter, 141
upper bound, 83, 89
uppercase characters, convert to

lowercase, 127
UseParensForNegativeNumbers

argument, 120
user input, prompt for specific, 112–113
user responses, save to global

variables, 236
user-defined data types, 44, 90–91
UserForm Controls, 240–241
UserForm events, 234, 278
UserForm template file, 242, 243
UserForms, 21, 226–227, 230
UserInterfaceOnly parameter,

174, 176

V
validation of dialog box input, 238–239
Value property of the Range object, 85
values axis, 274
values for variables, 78–79
ValueTitle parameter, 262
variable declaration statements, 300–301
variable declarations, 54
variable-length string variables, 62
variable-length strings, 46
variables, 47

assign values to, 78–79
compare standard, 72
declare, 54–55
name, 47
specify the data type for, 55
standard naming convention for, 91

Variant data type, 46, 78
variants, 46, 54
variations in a series of data, 270–271
VB (Visual Basic), 44
VBA code, 34, 43, 101, 108
VBA code watches. See watches
VBA commands, 50–51

193646-X Index.F 10/16/01 2:40 PM Page 336

337

EXCEL PROGRAMMING:
Your visual blueprint for

Creating Interactive Spreadsheets

VBA object library, 66
VBA object model, 59
VBA projects, 21
VBA (Visual Basic for Applications), 2, 22,

44–49
case sensitivity of, 47
compare to other macro languages, 44
compared to VB, 44
date range accepted by, 114
function constants and characters list,

308–311
function quick reference, 301–308
indentation of code, 101
statements quick reference, 298–301

VBAcodePrint Add-In, 323
VBAProject object library, 66
VBCode Cutter, 323
vbCrLf constant, 59
vbDayOfWeek constants, 309
VBE. See Visual Basic Editor (VBE)
vbFirstWeekOfYear constants, 309
vbMsgBoxStyle constants, 308–309
VBScript, 44
vbTab constant, 59
VeriSign, Inc., 19, 40
vertical indicator bar, 28
View menu, 24
View Microsoft Excel button, 31
viruses. See macro viruses
Visible property, 168–169, 244, 245
Visual Basic. See VB (Visual Basic)
Visual Basic Editor (VBE), 2, 3, 20

activate, 22–23
arrange the windows in, 24–25
modes of operation, 131
open, 22–23
remove modules from, 32–33
toggling with Excel, 23
Toolbox, 226–227

Visual Basic for Applications. See VBA
(Visual Basic for Applications)

W
watch expressions, 132–133
watches, 132, 134
Watches window, 20, 132, 133

Wb parameter with the NewWorkbook
event, 288

Web pages, 145
Weight parameter, 220
What parameter, 222, 224
While condition statement, 92
Width property, 201, 231
wildcards, 156, 158
windows, 23, 24–25
Windows Clipboard, 208, 210
With statement, 70
WithEvents keyword, 286, 287
workbook events, 276
Workbook object, 64, 154, 155
Workbook_BeforeClose procedure,

282–283
Workbook_BeforeSave procedure,

284–285
Workbook_Open macro, 36, 37
Workbook_Open procedure, 280–281,

288–289, 292, 293
workbooks

activation of, 151
add sheets to, 160–161
change the name of sheets within,

170–171
close, 10, 152–153
copy and paste sheets within, 166–167
create new, 154–155
delete macros from, 10–11
delete sheets from, 162–163
determine if open, 150–151
hide sheets in, 168–169
move sheets within, 164–165
open, 140–141
open text files as, 142–143
save, 146–147, 148–149
store macros in, 3

Workbooks collection, 64, 140, 150, 152
Workbooks property, 64
worksheet events, 277
worksheet functions, 108–109
Worksheet object, 64, 65, 167, 290–291
worksheets. See also sheets

embed charts within, 260–261
hide entire, 193
name, 170

protect, 174–175
refer to the currently selected, 69
reference specific cells in, 57, 184–185
remove from workbooks, 162
sort by name, 180–181

Worksheets collection, 65
Worksheets object, 163
Worksheets property, 65
workspace, save the entire, 149
WrapText property, 209
WriteResPassword parameter, 140,

147, 172, 173

X
x1AutoFillType constant values, 217
X1BorderWeight constants, 317
x1ChartType constant values, 263
X1ChartType constants, 314–316
X1ColumnDataType constants, 311
X1FileFormat constant values, 146,

311–313
X1LineStyle constant values, 221, 316
X1PasteType constant values, 213
X1Pattern constants, 317
XML, 2, 44
XML files, 145
Xor operator, 49
xPos argument, 112

Y
yPos argument, 112

193646-X Index.F 10/16/01 2:40 PM Page 337

193646-X Index.F 10/16/01 2:40 PM Page 338

	Excel Programming Your visual blueprint for creating interactive spreadsheets by Jinjer Simon
	Front of Book Information
	maranGraphics
	CREDITS
	GENERAL AND ADMINISTRATIVE
	ABOUT THE AUTHOR
	AUTHOR’S ACKNOWLEDGMENTS

	TABLE OF CONTENTS
	HOW TO USE THIS BOOK
	Ch01: GETTING STARTED WITH EXCEL MACROS
	AN INTRODUCTION TO MACROS
	RECORD A MACRO
	RUN A MACRO
	CREATE AND LAUNCH A KEYBOARD SHORTCUT
	DELETE A MACRO FROM A WORKBOOK
	DELETE FROM THE PERSONAL MACRO WORKBOOK
	ASSIGN A MACRO TO A TOOLBAR BUTTON
	ASSIGN A MACRO TO A MENU
	SET MACRO SECURITY

	Ch02: USING THE VISUAL BASIC EDITOR
	AN INTRODUCTION TO THE VISUAL BASIC EDITOR
	ACTIVATE THE VISUAL BASIC EDITOR
	ARRANGE THE VISUAL BASIC EDITOR WINDOWS
	SET PROPERTIES FOR A PROJECT
	SET DISPLAY OPTIONS FOR THE CODE WINDOW
	ADD A NEW MODULE
	REMOVE A MODULE
	RENAME A MACRO
	CREATE A STARTUP MACRO
	HIDE A MACRO
	ASSIGN A DIGITAL SIGNATURE TO A MACRO
	UPDATE A RECORDED MACRO

	Ch03: VBA PROGRAMMING BASICS
	AN INTRODUCTION TO VBA
	CREATE A SUBROUTINE
	CREATE A FUNCTION
	DECLARE A VARIABLE
	PERFORM MATHEMATICAL CALCULATIONS
	CREATE A CONSTANT
	COMMENT YOUR CODE
	JOIN TWO STRINGS

	Ch04: WORKING WITH THE EXCEL OBJECT MODEL
	AN INTRODUCTION TO THE EXCEL OBJECT MODEL
	USING THE OBJECT BROWSER
	CREATE AN OBJECT VARIABLE
	CHANGE THE PROPERTIES OF AN OBJECT
	COMPARE OBJECT VARIABLES
	USING AN OBJECT METHOD
	DISPLAY A BUILT-IN DIALOG BOX

	Ch05: USING VARIABLES AND ARRAYS
	ASSIGN VALUES TO VARIABLES
	USING GLOBAL VARIABLES
	DECLARE AN ARRAY
	DECLARE A MULTIDIMENSIONAL ARRAY
	CONVERT A LIST INTO AN ARRAY
	REDIMENSION AN ARRAY
	CREATE A USER-DEFINED DATA TYPE

	Ch06: ADDING CONTROL STATEMENTS
	EXECUTE A TASK WHILE A CONDITION IS TRUE
	PERFORM MULTIPLE TASKS UNTIL A CONDITION IS MET
	EXECUTE TASKS A SPECIFIC NUMBER OF TIMES
	USING THE FOR EACH NEXT LOOP
	CONDITIONALLY EXECUTE A GROUP OF STATEMENTS
	EXECUTE A STATEMENT BASED UPON THE VALUE
	JUMP TO A SPECIFIC LOCATION IN A MACRO
	CONDITIONALLY CALL A SUBROUTINE

	Ch07: USING BUILT-IN FUNCTIONS AND STATEMENTS
	USING EXCEL WORKSHEET FUNCTIONS
	USING THE MSGBOX FUNCTION
	USING THE INPUTBOX FUNCTION
	RETRIEVE CURRENT DATE AND TIME
	DETERMINE THE AMOUNT OF TIME BETWEEN DATES
	FORMAT A DATE EXPRESSION
	FORMAT A NUMERIC EXPRESSION
	REMOVE EXTRA SPACING FROM A STRING
	RETURN A PORTION OF A STRING
	COMPARE TWO STRINGS

	Ch08: DEBUGGING MACROS
	DEBUGGING BASICS
	DEBUG A PROCEDURE WITH INSERTED BREAK POINTS
	USING WATCH EXPRESSIONS TO DEBUG A PROCEDURE
	STEP THROUGH A PROCEDURE
	RESUME EXECUTION IF AN ERROR IS ENCOUNTERED
	PROCESS A RUNTIME ERROR

	Ch09: WORKING WITH OTHER WORKBOOKS AND FILES
	OPEN A WORKBOOK
	OPEN A TEXT FILE AS A WORKBOOK
	OPEN A FILE REQUESTED BY THE USER
	SAVE A WORKBOOK
	SAVE WORKBOOK IN FORMAT SPECIFIED BY USER
	DETERMINE IF A WORKBOOK IS OPEN
	CLOSE A WORKBOOK
	CREATE A NEW WORKBOOK
	DELETE A FILE
	FIND A FILE

	Ch10: WORKING WITH WORKSHEETS
	ADD A SHEET
	DELETE A SHEET
	MOVE A SHEET
	COPY AND PASTE A SHEET
	HIDE A SHEET
	CHANGE THE NAME OF A SHEET
	SAVE A SHEET TO ANOTHER FILE
	PROTECT A WORKSHEET
	PROTECT A CHART
	PRINT A SHEET
	SORT WORKSHEETS BY NAME

	Ch11: DEFINING RANGES
	USING THE RANGE PROPERTY
	USING THE CELLS PROPERTY
	COMBINE MULTIPLE RANGES
	USING THE OFFSET PROPERTY
	DELETE A RANGE OF CELLS
	HIDE A RANGE OF CELLS
	SPECIFY THE NAME OF A RANGE
	RESIZE A RANGE
	INSERT A RANGE
	SET THE WIDTH OF COLUMNS IN A RANGE
	SET THE HEIGHT OF ROWS IN A RANGE
	CONVERT A COLUMN OF TEXT INTO MULTIPLE COLUMNS
	FIND THE INTERSECTION OF TWO RANGES

	Ch12: WORKING WITH CELLS
	CUT AND PASTE RANGES OF CELLS
	COPY AND PASTE RANGES OF CELLS
	CUSTOM PASTE VALUES IN CELLS
	ADD COMMENTS TO A CELL
	AUTOMATICALLY FILL A RANGE OF CELLS
	COPY A RANGE TO MULTIPLE SHEETS
	PLACE BORDERS AROUND A RANGE OF CELLS
	FIND SPECIFIC CELL VALUES
	FIND AND REPLACE VALUES IN CELLS

	Ch13: CUSTOMIZING DIALOG BOXES, MENUS, AND TOOLBARS
	USERFORM BASICS
	WORKING WITH COMMANDBARS
	CREATE A CUSTOM DIALOG BOX
	CALL A CUSTOM DIALOG BOX FROM A PROCEDURE
	CAPTURE INPUT FROM A CUSTOM DIALOG BOX
	VALIDATE INPUT FROM A DIALOG BOX
	CREATE CUSTOM USERFORM CONTROLS
	CREATE A USERFORM TEMPLATE
	CREATE A CUSTOM TOOLBAR
	ADD CONTROLS TO A TOOLBAR
	CREATE A CUSTOM MENU
	ADD ITEMS TO A MENU
	CREATE A SHORTCUT MENU
	DELETE CUSTOM TOOLBARS AND SHORTCUT MENUS

	Ch14: WORKING WITH CHARTS
	CHART BASICS
	CREATE A CHART SHEET
	EMBED A CHART WITHIN A WORKSHEET
	APPLY CHART WIZARD SETTINGS TO A CHART
	ADD A NEW DATA SERIES TO A CHART
	FORMAT CHART TEXT
	CREATE CHARTS WITH MULTIPLE CHART TYPES
	DETERMINE VARIATIONS IN A SERIES OF DATA
	ADD A DATA TABLE TO THE CHART
	CUSTOMIZE THE CHART AXIS

	Ch15: AUTOMATING PROCEDURES WITH EXCEL EVENTS
	UNDERSTANDING EXCEL EVENTS
	RUN A PROCEDURE AS A WORKBOOK OPENS
	RUN A PROCEDURE BEFORE CLOSING A WORKBOOK
	RUN A PROCEDURE BEFORE SAVING A WORKBOOK
	RUN A PROCEDURE WHEN EXCEL CREATES A WORKBOOK
	MONITOR A RANGE OF CELLS FOR CHANGES
	EXECUTE A PROCEDURE AT A SPECIFIC TIME
	EXECUTE A PROCEDURE WHEN YOU PRESS KEYS
	RUN A PROCEDURE WHEN RIGHT- CLICKING A CHART

	App A: VBA QUICK REFERENCE
	VBA AND EXCEL OBJECT MODEL QUICK REFERENCE

	App B: ABOUT THE CD-ROM
	WHAT’S ON THE CD-ROM
	USING THE E-VERSION OF THE BOOK
	HUNGRY MINDS, INC. END-USER LICENSE AGREEMENT

	INDEX
	Symbols
	A - B
	C
	D - E
	F - H
	I - M
	N - O
	P - R
	S
	T - V
	W - Y

